Company Vains:

मतायभ्य महर्य - यञ्चावस हासि द्वाकीनवस

TCEQ Route Slip Date 2-1-10

TO:	RAYLAY	FROM:	DONNA WURST			
MC:	R14	MC:	163			
Office:	OPR/APD/R&R SECTION	Office:	OPR/APD/R&R SECTION			
Attachme	Attachment(s) for:					
Re	formation eview omment/Response	iew Your Signature				
Commer	nts:					
		·				
			· · · · · · · · · · · · · · · · · · ·			
			100			

FOLDER PREPARATION

- Prepare file folder for public file (Non-Confidential Information only) File
- Prepare Confidential file folder if applicable

IMS PROJECT CREATION (Ensure you enter the following into IMS based on info on the APPLICATION)

- Verify company name in SOS Note Tax ID:
- and Business Type
- Check for duplicates: From NSR home page search by permit number/RN/Customer Name use fee information and rule numbers
- Verify you have the correct RN by address/name
- New CN/RN Research to make sure you are not creating duplicate CN or RN
- For all rules except 261, 262 identify previous permit number to use for alteration if one exists with same rule number.
- New project number:
- Complete project detail, edit RN/CN, edit permit, contacts, rules, fee payment, assign staff, tracking elements, attributes, public notice, notes, and links sections as required.
- Commit to central registry

APPLICATION FILE REVIEW

- REGION 12 Check for Houston Air Toxics applications email to Johnny and Don
- Apply in EPAY if paid by voucher / Enter fee amount / Enter payment number / Copy of check in file
- Note **DEFICIENCIES** with application
- PUBLIC NOTICE see Public Notice checklist
- SITE REVIEW From APD menu (APIRT/NSR/Request for Comment/Permit by Rule) Enter project number & today's date/Select recipient (ART/etc.)/ Send email = YES /Change Information as needed (Date / Contact information /Punctuation on Company name and address/ Local Program Y N) Profile electronic copy- "Save as a new document" follow profiling guidelines / From email, must delete file that automatically attaches and then attach the file you just profiled and then send/Print site review for the file / Print properties page of email and place in file with site review print out /Update tracking elements

FINAL REVIEW SECTION - Before transferring the file, please ensure the following items have been completed:

- Add STAFF ASSIGNMENTS (Technical Engineer Team)
- Enter TRANSFER DATE in tracking
- Verify SIGNATURE on application. Applies only to PI-1 forms. If not signed and box IIIa is checked yes don't need this form call them. If original signature not provided, create note to technical staff regarding original signature. No signature required for
 PBR's unless the PI-7 Cert Section IIIa is checked yes.
- Print COMPLETED MIKEY and place in file
- Check FILE LABEL to verify information remained the same
- Include hard COPY OF ALL EMAILS in file (sent and received from CR, customer, APIRT, etc.) / Include phone log for all calls
- Confirm that all required IMS updates and TRACKING ELEMENTS were entered on the project record (as applicable)
- Confirm SITE REVIEW completed as appropriate
- Confirm PUBLIC NOTICE completed as appropriate
- Confirm LEG LETTERS completed as appropriate
- Finish CHECKLIST on left side of file (PS 1's only)

PBR / Duplicate Permit Staff Account 12 Confact Eec/EPAY Rules SR SOS CR TR Confidential Label Date Stamped DFC - permit RNEW - permit Concrete Batch Plant
R#
FEE DATE
STAFF - M/C
TR
12
PN Checklist
PN Tab
Language
PORTABLE Tab

Initial DUP ST & ST 2 SOS CR Confidential Tracking Q's from ap MSS R# FEE DATE **EPAY** DFC 1 SITE REVIEW PROFILE SR PN checklist LEGS SM/BIG VLP T30 Tla DFC 2 12 ACCT Language

Renewal CR RNEW R# FEE DATE SITE REVIEW PROFILE SR ST & ST 2 **EPAY** DUP TR SOS CR PN checklist T30 Tla if notice DFC 1 DFC 2 12 NOTE date renewal letter mail ACCT

Amendment CR **RNEW** R# FEE DATE SITE REVIEW PROFILE SR ST & ST 2 **EPAY** DUP **LEGS** SM/BIG V L P TR SOS CR PN checklist T30 T1a if notice DFC 1 DFC 2 12 ACCT

Texas Secreta of State Hope Andrade

UCC | Business Organizations | Trademarks | Notary | Account | Help/Fees | Briefcase | Logout FIND ENTITY NAME SEARCH

This search was performed on with the following search parameter:

ENTITY NAME: conocophillips company

<u>Mark</u>	<u>Filing</u> Number	<u>Name</u>	Entity Type	Entity Status	Name Type	<u>Name</u> Status
•	1157706	ConocoPhillips Company	Foreign For-Profit Corporation	In existence	Legal	In use
0	800124328	ConocoPhillips	Foreign For-Profit Corporation	Withdrawn	Legal	Inactive
0	800124328	ConocoPhillips Inc.	Foreign For-Profit Corporation	Withdrawn	Fictitious	Inactive
0	800148988	ConocoPhillips Services Inc.	Foreign For-Profit Corporation	Terminated	Legal	Inactive
0	800357341	CONOCOPHILLIPS DEVELOPMENTS LLC	Foreign Limited Liability Company (LLC)	In existence	Legal	In use
0	2397806	CONOCOPHILLIPS COMMUNICATIONS INC.	Foreign For-Profit Corporation	In existence	Legal	In use
0	133129801	CONOCOPHILLIPS FOUNDATION	Domestic Nonprofit Corporation	Voluntarily dissolved	Legal	Inactive
0	801047611	ConocoPhillips CPP Funding LLC	Foreign Limited Liability Company (LLC)	In existence	Legal	In use
0	<u>508006</u>	CONOCOPHILLIPS PIPE LINE COMPANY	Foreign For-Profit Corporation	In existence	Legal	In use
0	800855825	ConocoPhillips Sweeny Cogen LP, LLC	Foreign Limited Liability Company (LLC)	In existence	Legal	In use
<u> </u>	urn to Order	Reco	ords 1 to 10 of 14 scroll Next	>> OR proceed to	o page	of 2 pages GO

Return to Order

New Search

Instructions:

• To view additional information pertaining to a particular filing select the number associated with the name.

To place an order for additional information about a filing select the radial button listed under 'Mark' that is associated with the entity and press the 'Order' button.

TCEQ ePay Voucher Receipt

Transaction Information -

Voucher Number:

87873

Trace Number:

582EA000064939

Date:
Payment Method:

01/19/2010 10:48 AM CC - Authorization 0000187408

Amount:

\$450.00

Amount:

\$450.00

Fee Type:

PERMIT BY RULE - NOT SMALL BUSINESS, CITY OR ISD

ePay Actor:

Kate Branning

– Payor Information -

Payor Name:

Mary K Branning

Company:

Conocophillips Company

Address:

600 N Dairy Ashford 3wl-15060, Houston, TX 77079

Phone: 832-486-2110

Site Information –

Site Name:

SUGARKANE CENTRAL BATTERY

Site Location:

FROM PAWNEE GO 1 MILE NORTH ON HWY 72 TO FM-882 GO

APPROX 10.5 MILES ON FM-882 T

– Customer Information –

Customer Name:

CONOCOPHILLIPS COMPANY

Customer Address:

600 N DAIRY ASHFORD 3WL-15060, HOUSTON, TX 77079

APIRT
JAN 28 2010

Buddy Garcia, Chairman Larry R. Soward, Commissioner Bryan W. Shaw, Ph.D., Commissioner Mark R. Vickery, P.G., Executive Director

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Protecting Texas by Reducing and Preventing Pollution

March 5, 2010

MS KATE BRANNING STAFF ENVIRONMENTAL SCIENTIST CONOCOPHILLIPS COMPANY 600 N DAIRY ASHFORD ST WL3 15060 HOUSTON TX 77079-1100

RECEIVED

JAN 03 2012

CENTRAL FILE ROOM

Permit by Rule Registration Number:

Location/City/County:

87632

From Pawnee go 1.0 mile north on Highway 72 to FM 882; go

 ${\sim}10.5$ miles on FM 882; turn right on lease road & go ${\sim}~1.0$ mile

down lease road to the site. Pawnee, Live Oak County Sugarkane Central Battery 1

Project Description/Unit:

Regulated Entity Number:

RN105698112 CN601674351

Customer Reference Number:

New

New or Existing Site: Affected Permit (if applicable):

None

Affected Permit (if applicable): Renewal Date (if applicable):

None

ConocoPhillips Company has certified the emissions associated with the continued overall operation of the process equipment at the Sugarkane Central Battery 1 under Title 30 Texas Administrative Code §§ 106.352, 106.492, and 106.512. For rule information see http://www.tceq.state.tx.us/permitting/air/nav/numerical_index.html.

The maintenance, startup, and shutdown emissions consisting of compressor blowdowns have been previously reviewed and authorized for this registration. The company is also reminded that these facilities may be subject to and must comply with other state and federal air quality requirements.

All analytical data generated by a mobile or stationary laboratory to support the compliance with an air permit must be obtained from a NELAC (National Environmental Laboratory Accreditation Conference) accredited laboratory. For additional information regarding the laboratory accreditation program, please see the following website which includes the accreditation and exemption information:

http://www.tceq.state.tx.us/compliance/compliance support/qa/env lab accreditation.html.

This certification is taken under the authority delegated by the Executive Director of the Texas Commission on Environmental Quality. If you have questions, please contact Mr. Raymond D. Lay at (361) 825-3426.

Sincerely,

Anne M. Inman, P.E., Manager Rule Registrations Section

Air Permits Division

cc: Air Section Manager, Region 14 - Corpus Christi

Certified Site-wide Emissions:

VOCs	23.92	tpy
HAPs (included in VOC)	4.28	tpy
H ₂ S	<0.01	tpy
SO ₂	0.46	tpy
CO	53.58	tpy
NO_x	28.43	tpy
PM ₁₀	0.55	tpy

Project Number: 154205

Permit No.: 87632	Company Name: ConocoPhillips Company	APD Reviewer: Mr. Raymond D. Lay
Project No.: 154205	Unit Name: Sugarkane Central Battery 1	PBR No(s).: 106.352, 106.492, and 106.512

SGENERAL INFORMAT	TION		
Regulated Entity No.:	RN105698112	Project Type:	Permit by Rule Application
Customer Reference No.:	CN601674351	Date Received by TCEQ:	January 28, 2010
Account No.:	None	Date Received by Reviewer:	February 01, 2010 (Electronic copy) February 03, 2010 (Original)
City/County:	Pawnee, Live Oak County	Physical Location:	From Pawnee go 1.0 mile north on Highway 72 to FM 882; go \sim 10.5 miles on FM 882; turn right on lease road & go \sim 1.0 mile down lease road to the site.

CONTACT INFORMATION			Company of		
Responsible Official/ Primary	Mr. Randy C. Black	Phone No.:	(832) 486-2110	Email:	randy.c.black@conocophillips.com
Contact Name and Title:	Manager Production Operations West	Fax No.:			
Technical Contact/ Consultant	Ms. Kate Branning	Phone No.:	(832) 486-2110	Email:	kate.k.branning@conocophillips.com
Name and Title:	Staff Environmental Scientist	Fax No.:	(918) 662-6171		

GENERAL RULES CHECK	YES	NO	COMMENTS
Is confidential information included in the application?		X	Non-confidential information was submitted.
Are there affected NSR or Title V permits for the project?		Х	There are no NSR or Title V Permits associated with the ConocoPhillips Company (ConocoPhillips) Sugarkane Central Battery 1 (SCB1).
ls each PBR > 25/250 tpy?		Х	Certified Site-Wide Emissions: 23.918 tpy of VOC, 28.427 tpy of NO ₃ , 53.582 tpy of CO, 0.455 tpy of SO ₂ , 0.546 tpy of PM ₁₀ , 0.002 tpy of H ₂ S, and 4.283 tpy of HAPS.
Are PBR sitewide emissions > 25/250 tpy?		Х	See the Estimated Emissions table below.
Are there permit limits on using PBRs at the site?		X	N/A, there are no permit limits on using PBRs at the SCB1.
Is PSD or Nonattainment netting required?		Х	The project has not triggered a PSD review. The SCB1 is located in Live Oak County, which is classified as an attainment county. The project has not triggered a nonattainment review.
Do NSPS, NESHAP, or MACT standards apply to this registration?	Х		MACT 40 CFR 63 Subparts ZZZZ & JJJJ.
Does NOx Cap and Trade apply to this registration?		X	The SCB1 is not located in Houston/Galveston area.
Is the facility in compliance with all other applicable rules and regulations?	Х		ConocoPhillips has demonstrated that the SCB1 is in compliance under Title 30 Texas Administrative Code (TAC) §§ 106.352, 106.492, and 106.512.

DESCRIBE OVERALL PROCESS AT THE SITE

The SCB1 site receives production from several gas wells that flow continuously throughout the year. Produced gas flows through two separator systems where the hydrocarbon condensate and water are removed. Condensate liquids from the low-pressure separators will flow to one of ten condensate storage tanks (Emission Point No. [EPN] F1MSS-VRU). Produced water flows to a water storage tank (EPN F1MSS-VRU). Liquids from two JATCO units, the two fuel scrubbers and two discharge compressor scrubbers will flow to a common slop tank (EPN F1MSS-VRU). Liquids are removed from the site via tank truck, resulting in VOC emission from truck loading (EPN F1MSS-VRU).

Tank and loading emission are vented to a vapor recovery unit (VRU) with 95% control, which accounts for 5% VRU (EPN F1MSS-VRU) downtime. During VRU downtime, the vapors are routed to a flare with 98% destruction efficiency (EPNs F1MSS-VRU and F2MSS-BDWN).

The natural gas product from the low-pressure separator is compressed with a compressor driven by a lean-burn 633-horsepower (hp) Caterpillar G3508 TALE engine (EPN C-1) and one lean-burn 670-hp Caterpillar G3508 LE engine (EPN C-2). During compressor downtime, low-pressure gas will be sent to a flare (F2MSS-BDWN with 98% destruction efficiency.

Fugitive emissions may occur from valves, flanges, compressor seals, and other components (EPN FUG). There are two additional condensate tanks installed on site but are out of service.

DESCRIBE PROJECT AND INVOLVED PROCESS

ConocoPhillips has certified the emissions associated with the continued overall operation of the process equipment at the Sugarkane Central Battery 1 under Title 30 Texas Administrative Code §§ 106.352, 106.492, and 106.512.

ConocoPhillips proposes to incorporate one lean-burn 670-hp Caterpillar G3508 LE engine/compressor set (EPN C-2), four 500-bbl condensate storage tanks (EPNs T-7, T-8, T-9, and T-10), and associated components. In order to accommodate the aforementioned changes, ConocoPhillips would like to reduce the 20% safety factor represented in the PBR registration application dated March 5 2009 to 10%.

MSS emissions consisting of compressor blowdowns have been previously reviewed and authorized for the registration.

30 TAC \$106352 RULE CHECK		
REQUIREMENTS	YES, NO, or N/A	OTHER / COMMENTS
If the site conditions the natural gas (with a glycol dehydrator, amine unit, sulfur recovery unit, etc.),	N/A	There are no glycol dehydrator, amine unit, sulfur
it handles less than two long tons per day of sulfur compounds (1 long ton = 2240 pounds).		recovery units at the SCB1.
(1) All compressors will meet the requirements of 106.512.	YES	

Permit No.: 87632	Company Name:	ConocoPhillips Company	APD Reviewer:	Mr. Raymond D. Lay
Project No.: 154205	Unit Name:	Sugarkane Central Battery 1	PBR No(s).:	106.352, 106.492, and 106.512

(1) All flares will meet the requirements of 106.492.	YES	
(2) Total emissions, including process fugitives, combustion unit stacks, separator, or other process vents, tank vents, and loading emissions from all such facilities constructed at a site under this section, will be equal to or below 25 tons per year (tpy) each of sulfur dioxide (SO ₂), all other sulfur compounds combined, or all volatile organic compounds (VOC) combined; and 250 tpy each of nitrogen oxide and carbon monoxide.	YES	Certified Site-Wide Emissions: 23.918 tpy of VOC, 28.427 tpy of NO _x , 53.582 tpy of CO, 0.455 tpy of SO ₂ , 0.546 tpy of PM ₁₀ , 0.002 tpy of H ₂ S, and 4.283 tpy of HAPS.
(3) If the facility handles sour gas, it will be located at least ¼ mile from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facility or the owner of the property upon which the facility is located.	NO	
(4) Total emissions of sulfur compounds, excluding sulfur oxides, from all vents will be equal to or below 4.0 pounds per hour (lb/hr).	YES	Actual Sulfur Emissions = <u>0.04</u>
(4) The height of each vent emitting sulfur compounds meets the following requirements, and is in no case less than 20 feet.	YES	Actual Vent Height = <u>30.</u>
(5) If the site handles sour gas, the company will register the site by submitting Form PI-7 or PI-7-CERT before operations begin.	NO	PI-7-CERT

106.492 Flares:

- 1. CPC has included a description of how the exemption claim meets the general rule for the use of exemptions.
- 2. The flare is equipped with a tip designed to provide good mixing with air, flame stability and a tip velocity less than 60 ft/sec for gases having a lower heating value less than 1,000 BTU/ft³, or less than 400 ft/sec for gases with a LHV greater than 1,000 BTU/ft³
- 3. The flare is equipped with a continuously burning pilot or other automatic ignition system that assures gas ignition whenever vents are directed to the flare
- 4. The flare does not emit more than 4 lb/hr of reduced sulfur compounds, excluding sulfur oxides.
- 5. The flare emits less than 4 lb/hr of reduced sulfur compounds and is not equipped with an alarm system, does the stack height meet the requirements of condition (d) of \$106.352, previously standard exemption STDX 66. Required height: 20 feet. The actual height: 30 feet.
- 6. The flare does not burn gases containing more than 24 ppmv of sulfur, chlorine or compounds containing either element.
- 7. The flare does not emit HCl,
- 8. The flare does emit SO₂, the heat release exceed the Btu/hr based on lower heating value.
- 9. CPC will limit the flare to burning only combustible mixtures of gases containing only carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine, or compounds derived from these elements.
- 10. The gas mixture will always have a net or lower heating value of at least 200 BTU/ft3 prior to addition of air.
- 11. CPC understands and will ensure that liquids shall never be burned in the flare.

30 TAC §106.512 RULE CHECK		
REQUIREMENTS	YES, NO,	OTHER / COMMENTS
	or n/a	
(1) The engines or turbines have been registered with Form PI-7 or PI-7-CERT within 10 days of the	YES	
start of construction.		Horsepower of engine = $\underline{670}$.
(1) Table 29 has been submitted for each proposed gas stationary internal combustion reciprocating	YES	
engine.		
(2) Any engines rated greater than 500-hp will meet the requirements of subparagraphs (A) - (C) of	YES	
this paragraph.		
(2)(A) Emissions of nitrogen oxides (NO _x) will not exceed the following limit:	YES	Actual NO _x Emissions = 2.0 g/hp-hr .
Check which limit applies:		
(2)(A)(ii) 2.0 g/hp-hr at manufacturer's rated full load and speed, and other operating	YES	
conditions, except 5.0 g/hp-hr under reduced speed, 80-100% of full torque conditions,		
for any spark-ignited, gas-fired lean-burn engine, or any compression-ignited dual fuel-		
fired engine manufactured new after June 18, 1992;		
(2)(B) The engine requires an automatic air-fuel ratio (AFR) controller in order to meet the NOx	YES	
limits in subparagraph (2)(A).		
(2)(B) The engine requires an automatic air-fuel ratio (AFR) controller in order to meet the	NO	
following requirements:		
An AFR controller shall be deemed necessary for any engine controlled with a non-selective		
catalytic reduction (NSCR) converter and for applications where the fuel heating value varies		
more than \pm 50 British thermal unit/standard cubic feet from the design lower heating value		
of the fuel. If an NSCR converter is used to reduce NO _x , the automatic controller shall		
operate on exhaust oxygen control.		
2)(C) The records specified in (2)(C) of this PBR will be created and maintained by the owner or	YES	
operator for a period of at least two years, made available, upon request, to the commission and		
any local air pollution control agency having jurisdiction.		
(4) Any engine or turbine rated less than 500 hp or used for temporary replacement purposes is	YES	Horsepower= <u>670.</u>
exempt from the emission limitations of paragraphs (2) and (3) above.		
Temporary replacement engines or turbines shall be limited to a maximum of 90 days of operation		Temporary? NO.
after which they shall be removed or rendered physically inoperable.		
(5) The gas fuel will be limited to: sweet natural gas or liquid petroleum gas, fuel gas containing no	YES	Type of fuel= Sweet field gas.
more than ten grains total sulfur per 100 dry standard cubic feet, or field gas.	<u>. </u>	Sulfur content of fuel gas (gr/100 dscf): <u>5.</u>

Permit No.: 87632	Company Name: ConocoPhillips Company	APD Reviewer: Mr. Raymond D. Lay
Project No.: 154205	Unit Name: Sugarkane Central Battery 1	PBR No(s).: 106.352, 106.492, and 106.512

ity has been demonstrated.	1	1 1 1 1			
Engine Identifier / EPN	Max. Hourly Concentration of NO ₂ /NO _x (from Screen3 modeling) (µg/m³)	Max. Annual Concentration of NO ₂ /NOx (Max. Hourly Conc. X 0.08)	NO ₂ /NOx F (from tab below)	Ratio	ctor, was used to demonstrate NAAQS: Annual Impact Concentration (μg/m³)
C-1	134.80	10.784			1.67
C-2_	126.40	10.112			1.66
		Background Concen	ration for Cou	nty=	20.000
			TOT	AL=	23.33
	Is total	below NAAQS limit for NO2 of 1	00 μg/m³ (yes	/no)?	YES
The engine or turbine will not	be used to generate electricity.		YES		

NATURAL G	AS FIRED COMPRESS	OR ENG	INE	9000	n - mann			ensy conjunc		
Engine Identifier (EPN/name)	Engine Information		Pollutant	Source of Emission Factor	Emission Factor Before Controls	Type of Control Device	Control Efficiency	Emission Factor After Controls	Emissions (lb/hr)	Emissions (tpy)
C-2	Horsepower:	670	NMNEHC	Vendor	1.0				1.625	7.117
Caterpillar G3508 LE	Fuel Consumption (Btu/lip-hr):	7,510	NOx	Vendor	2.0				3.250	14.233
	2 or 4 stroke, Rich or Lean Burn:	4 Lean	CO	Vendor	4.0]	NONE		6.499	28.467
	Hours of Operation per year:	8,760	PM ₁₀	AP-42	0.00999		NONE		0.061	0.269
	Vendor Data Sheet Included?	YES	SO ₂	AP-42	0.0477				0.293	0.320
	Date of Manufacture or Reconstruction:	8/09	CH₂O	AP-42	0.270				0.558	2.443
Does NSPS	, Subpart JJJJ apply?	YES		If yes, how	Why o will requireme	r why not? nts be met?	Original Mfr	. date of 08/17	/2009	
Does MACT,	Subpart ZZZZ apply?	YES	ent in the second	Why or why not? Meets requirements of 40 CFR If yes, how will requirements be met? requirements apply under this			further			

COMMU	VICATION	LOG	
Date	Time	Name/Company	Subject of Communication
03/09/10	9:55 am	Mr. Howard Uhal, Team Leader	Received an email from Mr. Uhal stating: "Ray, Please address Anne's comments per the attachment. The "additional flare emissions" cells are circled because it seems there should be some non-zero values for the short and long term emissions from that EPN. Let me know what you find. Thanks! Howard T. Uhal"
	10:17 am	Ms. Kate Branning, Staff Environmental Scientist	Sent an email to Ms. Branning stating: "I'm requesting that there should additional flare emissions (VOC) (EPN F1MSS-VRU) calculated and listed. Please revise Table 3-1 to include the VOC emissions (lb/hr and/or tpv).
			Please email the tables and checklist to me. Thank you for your cooperation in this request. Regards, Raymond D. Lay"
	11:09 aın		Received a response email from Ms. Branning stating: "Mr. Lay, I will take a look at this today and get back to you. Thank you, Kate Branning"
03/10/11	9:01 am	Ms. Kate Branning	Ms. Branning called and left a voice message for this reviewer and to please call to discuss the matter.
	12:28 pm		Sent an email stating: "Ms. Branning, I've attached the Table 3-1 Emissions Summary that will be in the TRV. You will see what VOC emissions (bold & XXXX) that I'm talking about. What are those VOC emissions (lb/hr and tpy). Thanks, Raymond"
	2:08 PM		Received the revised Table 3-1 Emissions Summary with the VOC emissions from tanks T-7, T-8, T-9, & T-10.

Permit No.: 87632	Company Name: ConocoPhillips Company	APD Reviewer: Mr. Raymond D. Lay
Project No.: 154205	Unit Name: Sugarkane Central Battery 1	PBR No(s).: 106.352, 106.492, and 106.512

EPN / Emission Source	Specific VOC or	V(C	N	Ox	(C	Ю -	P	VI ₁₀	S	O ₂	Ot	ber
Name and the second	Other Pollutants	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy	lbs/hr	tpy
*Total Existing Facility	H ₂ S	3.654	16.308	11.637	14.193	51.426	25.110	0.059	0.261	0.333	0.135	0.004	0.002
Emissions	HAPs					ŀ						0.414	1.836
C-2 / Lean-burn 670-hp Caterpillar G3508 LE Engine	IIAPs	1.625	7.117	3.250	14.233	6.499	28.467	0.061	0.269	0.293	0.320	0.558	2.443
F1MSS-VRU / Additional Flare Emissions (T-7, T-8, T-9, & T-10)		<0.004	0.132	0.101	0.001	0.865	0.005	0.012	0.017	0.001	<0.001	<0.001	<0.004
FUG / Fugitive Emissions		0.082	0.361	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
TOTAL EMISSIONS	H ₂ S		23.918		28.427		53.582		0.547		0.455		0.002
(TPY):	HAPs								1	ļ			4.283

^{*} Changed 20% Safety Factor represented in Permit by Rule Application dated March 05, 2009 to 10% Safety Factor.

SITE REVIEW / DISTANCE LIMIT	Yes	No	Description/Outcome	Date	Reviewed by
Site Review Required?		X		March 5, 2010	Mr. Raymond D. Lay
PBR Distance Limits Met?	X		>100 feet to the nearest property line and >1,000 feet to the nearest off-property structure.	March 5, 2010	Mr. Raymond D. Lay

	TECHNICAL REVIEWER	PEER REVIEWER	FINAL REVIEWER
SIGNATURE:	Raymond S. Lay	amanda Apeny	Elizale Prices
PRINTED NAME:	Mr. Raymond D. Lay	Ms. Amanda Berry	Mr. Clyde Price
DATE:	March 5, 2010	March 5, 2010	March 5, 2010

Have Tittle

Correction made by Ray Lay on 03/10/2010, reviewed by H. Uhal

BASIS OF PROJECT POINTS	POINTS
Base Points: 106.352	2.00
Project Complexity Description and Points:	
106.492 &106.512	1.00
Technical Reviewer Project Points Assessment:	3.00
Final Reviewer Project Points Confirmation:	3.00

02/01/10 (email Coper) 02/03/10 (original)

01/29/2010NSR IMS - PROJECT RECORD
PROJECT#: 154205 PERMIT#: 87632 STATUS: PENDING DISP CODE: RECEIVED: 01/28/2010 PROJTYPE: REVISION AUTHTYPE: PBR ISSUED DT: RENEWAL: PROJECT ADMIN NAME: SUGARKANE CENTRAL BATTERY 1 PROJECT TECH NAME: SUGARKANE CENTRAL BATTERY 1
Assigned Team: RULE REG SECTION
STAFF ASSIGNED TO PROJECT: GLASPIE-FELIX , SHELIA - REVIEWR1_2 - AP INITIAL REVIEW TEAM LEADER , RR - REVIEW ENG - RULE REG SECTION
CUSTOMER INFORMATION (OWNER/OPERATOR DATA) ISSUED TO: CONOCOPHILLIPS COMPANY COMPANY NAME: ConocoPhillips Company CUSTOMER REFERENCE NUMBER: CN601674351 X PRI (39/1273) \$ TRV (39/1274)
REGULATED ENTITY/SITE INFORMATION REGULATED ENTITY NUMBER: RN105698112 ACCOUNT: SITE NAME: SUGARKANE CENTRAL BATTERY 1
REGULATED ENTITY LOCATION: FROM PAWNEE GO 1.0 MI N ON HWY 72 TO FM 882 GO APPROX 10.5 MI ON FM 882 TURN R ON LEASE RD GO APPROX 1.0 MI DOWN LEASE RD TO SITE REGION 14 - CORPUS CHRISTI NEAR CITY: PAWNEE COUNTY: LIVE OAK
CONTACT DATA
CONTACT NAME: MR RANDALL BLACK CONTACT ROLE: RESPONSIBLE OFFICIAL JOB TITLE: MANAGER PRODUCTION OPERATIONS WEST ORGANIZATION: CONOCOPHILLIPS COMPANY MAILING ADDRESS: 1516 DEMARET CT, LAREDO, TX, 78045-7542 PHONE: (361) 586-4050 Ext: 0 EMAIL:RANDY.C.BLACK@CONOCOPHILLIPS.COM
CONTACT NAME: MS KATE BRANNING CONTACT ROLE: TECHNICAL CONTACT JOB TITLE: STAFF ENVIRONMENTAL SCIENTIST ORGANIZATION: CONOCOPHILLIPS COMPANY MAILING ADDRESS: PO BOX 2197, 3WL-15060, HOUSTON, TX, 77252-2197 PHONE: (832) 486-2110 Ext: 0 FAX: (918) 662-6171 Ext: 0 EMAIL:KATE.K.BRANNING@CONOCOPHILLIPS.COM STAGE TRV. DUGS
0100071111
FEE: Reference Fee Receipt Number Amount Fee Receipt Date Fee Payment Type 87873 450,00 ePAY
TRACKING ELEMENTS: TE Name APIRT RECEIVED PROJECT (DATE) APIRT TRANSFERRED PROJECT TO TECHNICAL STAFF (DATE) CENTRAL REGISTRY UPDATED DEFICIENCY CYCLE ENGINEER INITIAL REVIEW COMPLETED (DATE) PEER / MANAGER REVIEW PERIOD PROJECT RECEIVED BY ENGINEER (DATE) Complete Date Complete Date 01/28/2010 01/29/2010 01/29/2010 01/29/2010

Permit Unit Type:

03/31/5006

03/31/5006

03/31/5006

106.512

106.492

106.352

			ets⊍ bn∃	Stad hate	Rule Desc
				:S:	PERMIT RULE
APPROVE	٨	αα ∨	- 83	ивястовыи	106.512 ENG
APPROVE	٨	adA		RES -	492 FLA
APPROVE	٨	ααγ	- SEITLION FACILITIES -	АИ <mark>D</mark> GAS РРС	106.352 OIL.
Approve	notasilqqA nO	Request Type			Rule Desc
				res:	PROJECT RU

01/29/2010	NSR IMS - PROJECT F	RECORD		
PROJECT#: 154205 RECEIVED: 01/28/2010 RENEWAL:	· · ·			DISP CODE:
	SUGARKANE CENTRAL BA UGARKANE CENTRAL BAT			
Assigned Team: RULE R	EG SECTION			
STAFF ASSIGNED TO PR GLASPIE-FELIX , SHELIA TEAM LEADER , RR			TIAL REVIEW REG SECTION	
CUSTOMER INFORMATION ISSUED TO: CONOCOPHIC COMPANY NAME: Conoccustomer reference	Phillips Company	ATA)		
REGULATED ENTITY/SIT REGULATED ENTITY NUI SITE NAME: SUGARKANE	MBER: RN105698112		AC	COUNT:
TURN R ON LEASE RD G	CATION: FROM PAWNEE G O APPROX 1.0 MI DOWN LI RISTI NEAR CITY: PAN	EASE RD TO SITE		82 GO APPROX 10.5 MI ON FM 88
CONTACT DATA				-
MAILING ADDRESS: 1516 PHONE: (361) 586-4050 E EMAIL: RANDY.C. BLACK@	RODUCTION OPERATIONS DEMARET CT , LAREDO,	WEST ORGA TX, 78045-7542		ESPONSIBLE OFFICIAL DNOCOPHILLIPS COMPANY
CONTACT NAME: MS KA	TE BRANNING	CONTACT ROL		
MAILING ADDRESS: PO E PHONE: (832) 486-2110 E FAX: (918) 662-6171 Ext: 0		JSTON, TX, 77252		HILLIPS COMPANY
FEE:				
Reference Fee Rece 87873	ipt Number Amount 450.00	Fee Receipt Date	Fee Paym ePAY	ent Type
TRACKING ELEMENTS: TE Name APIRT RECEIVED PRO	, ,		Start Date 01/28/2010	Complete Date
CENTRAL REGISTRY U DEFICIENCY CYCLE	VIEW COMPLETED (DATE)	STAFF (DATE)	01/29/2010 01/29/2010	01/29/2010
Permit Unit Type:				

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule

I. REGISTRANT INFORMATIO	N		193	en de l'amplique production de l'amplique de		
A. TCEQ Customer Reference Number:	CN- 601674351	TCEQ Regu	lated Entity Number:	RN- 105698112		
Note: If "NO," CN or RN number was ent of the submittal process.	tered above; please fill	out the require	d Core Data Form, wh	ich will be available in Step II		
B. Company or Other Legal Customer Na	ame: ConocoPhillips (Company				
Company Official Contact Name: Randall	Black	Title: Mana	ger Production Oper	ations - West		
Mailing Address: Walker Plaza, 1516 De	emaret Court					
City: Laredo		State: Texa	s Zi	p Code: 78045		
Phone No.: 361-586-4050	Fax No.:		E-mail Address: Rand	y.C.Black@conocophillips.com		
C. Technical Contact Name: Kate Branr	ning		Title: Staff Environm	nental Scientist		
Company: ConocoPhillips Company						
Mailing Address: P.O. Box 2197 3WL-1	15060	. ===				
City: Houston		State: Texa	s Zi	p Code: 77252		
Phone No.: 832-486-2110	Fax No.: 918-662-61	171	E-mail Address: kate.	k.branning@conocophillips.com		
D. Facility Location Information - Street	Address:	,				
If "NO," street address, provide written driving directions to the site: (attach description if additional space is needed)						
From Pawnee, go 1 mile north on Hwy 72 to FM-882. Go approx. 10.5 miles on FM-882, turn right on lease road and go ~1 mile						
City: Pawnee	C	ounty: Live Oa	ak Zi	p Code: 78145		
II. FACILITY AND SITE INFOR	MATION	198				
A. Name and Type of Facility: Sugarkar	ne Central Battery 1			Permanent Portable		
B. PBR claimed under 30 TAC § 106 (Li	st all):					
§ 106. 352 Oil and Gas Production Faci	lities	§ 106.				
§ 106. 492 Flares		§ 106.				
§ 106. 512 Stationary Engines and Turbines § 106.						
Are you claiming a historical standard ex	emption or PBR?		•	☐ YES 🗹 NO		
If "YES," enter effective date and Rule Nu	mber:					
C. Is there a previous Standard Exemptio (Attach details regarding changes.)	n or PBR for the facilit	y in this registr	ation?	✓ YES □ NO		
If "YES," enter Registration Number and I	Rule Number: 87632	2				

TCEQ 20182 (Revised 06/09) Form PI-7 CERT This form for use by facilities subject to air quality permits requirements and may be revised periodically. (APDG 5379 v8)

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule

II. FACILITY AND SITE INFORMATION (continued)						
D. Are there any other facilities at this site which are authorized by an Air Standard Exemption or PBR?	☐ YES 🗹 NO					
If "YES," enter Registration Number and Rule Number:						
E. Are there any other air preconstruction permits at this site?	YES 🛮 NO					
If "YES," enter Permit Numbers:	I					
Are there any other air preconstruction permits at this site that would be directly associated with this project?	YES NO					
If "YES," enter Permit Numbers:						
F. Is this facility located at a site which is required to obtain a federal operating permit pursuant to 30 TAC Chapter 122? ☐ YES ✓ NO ☐ TAC Chapter 122?	To be determined					
If the site currently has an existing federal operating permit, enter the permit number:						
Identify the requirements of 30 TAC Chapter 122 that will be triggered if this certification is accepted.						
☐ Initial Application for an FOP ☐ Significant Revision for an SOP ☐ Minor Revision for an	n SOP					
☐ Operational Flexibility/off Permit Notification for an SOP ☐ Revision for GOP ☐ To be Determined	✓ None					
Identify the type(s) issued and/or FOP application(s) submitted/pending for the site. (Check all that apply)						
☐ SOP ☐ GOP application/revision application: Submitted or under APD review	w.					
SOP application/revision application: submitted or under APD review.	••••					
G. TCEQ Account Identification Number (if known):						
III. FEE INFORMATION						
See Section VI. for address to send fee or go to www.2.tceq.state.tx.us/epay to pay online.						
A. Is this certification to solely establish a federally enforceable emission limit and not authorize any new facilities? If "YES," than no fee is required. If "NO," then go to Section III.B.	☐ YES ☑ NO					
B. If "YES," to any of the following three questions, a \$100 fee is required. Otherwise, a \$450 fee is required.						
Does this business have less than 100 employees? ☐ YES ✓ NO						
Does this business have less than 6 million dollars in annual gross receipts?	☐ YES 🗹 NO					
Is this registration submitted by a governmental entity with a population of less than 10,000?	☐ YES ☑ NO					
C. Check/Money Order or Transaction Number (Payable to TCEQ): \$1813 Was fee Paid online?	✓ YES ☐ NO					
Company name of check: N/A Fee amount:	\$ \$450.00					

TCEQ 20182 (Revised 06/09) Form PI-7 CERT
This form for use by facilities subject to air quality permits requirements and
may be revised periodically. (APDG 5379 v8)

APIRT
JAN 28 2010

Texas Commission on Environmental Quality Form PI-7-CERT Certification and Registration for Permits by Rule

IV. SELECTED FACILITY REVIEWS ONLY—TECH	NICAL INFORMATIO	Y				
Note: If claiming one of the following PBRs, complete this sec	tion, then skip to Section	VI., "Submitting your re	gistration" below:			
Animal Feeding Operations § 106.161, Livestock Auction Faci Drying § 106.283, Auto Body Refinishing Facilities §106.436, a			ing, Storage and			
A. Is the applicable PBR checklist attached which shows the far the PBR(s) being claimed? (If submitting electronically, clied)		specific requirements of	YES NO			
B. Distance from this facility's emission release point to the ne	arest property line:		feet			
Distance from this facility's emission release point to the nearest	off-property structure:		feet			
V. TECHNICAL INFORMATION INCLUDING STATE Registrants must be in compliance with all applicable						
A. Is confidential information submitted and properly marked "	CONFIDENTIAL" with	this registration?	☐ YES 🗹 NO			
B. Is a process flow diagram or a process description attached?			YES NO			
C. Are emissions data and calculations for this claim attached?						
D. Is information attached showing how the general requirements (30 TAC § 106.4) of the PBR is met for this Registration? (PBR checklists may be used, but are optional) ✓ YES ☐ NO						
Note: Please be reminded that if the facilities listed in this regist 30 TAC Chapter 101, Subchapter H, Division 3, the owner/operactual NO _x , emissions from these facilities.	· ·	-	. ~			
E. Is information attached showing how the specific PBR requirements are met for this registration? (PBR checklist may be used, but are optional)						
F. Distance from this facility's emission release point to the ne	arest property line:	>100	feet			
Distance from this facility's emission release point to the nearest	off-property structure:	>1000	feet			
Note: In limited cases, a map or drawing of the site and surrounding land use may be requested during the technical review or at the request of the TCEQ Regional Office or local air pollution control program during an investigation.						

TCEQ 20182 (Revised 06/09) Form PI-7 CERT This form for use by facilities subject to air quality permits requirements and may be revised periodically. (APDG 5379 v8) APIRT
JAN 28 2010

TCEQ Core Data Form For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

coast	1111111111	۸۲۸	W-1	A-1		2000 1111 490
::5	288 mm	LEU	use	Unity	65.5	ndi. 2 🕅 16
, si	y - A kondo	50 180	Sin Sie	19: 19	5-38-5-	45,84 50
	agai prju	46.11	786 HE	: 🐉 🖽	de di di	1000
		0.08	200	. II	0.00	

<u>SECTION I: Gen</u>	<u>eral Information</u>								
	on (If other is checked please							um (14)	
	ation or Authorization (Core Da	***************************************				applicatio	n)		
	ta Form should be submitted wid Describe Any Attachments: (Oth	- I	n oto)			and and the
	Permit by Rule Applicat		auon, waste	Hansp	юнег Арріісано	n, etc.)			, jagendib
3. Customer Reference		Follow this link	to search	4. Re	gulated Entit	v Referen	ce Numb	er <i>lif issu</i>	ed)
CN 601674351		for CN or RN nu Central Reg	ımbers in		10569811	-		01 (11 1000	
	stomer Information	<u>oontan tog</u>	ouy issa. [- 1	10007011	· -		RF	CEIVED
	stomer Information Updates (r	nm/dd/vvvv)	1/18/2	010					
	sed or Actual) - as it relates to the		listed on this	form.	Please check of	nly <u>one</u> of t	he following	, JAI	1 28 201 0
Owner	Operator	⊠ Owner	r & Operato	٢				AIR PER	RMITS DIVISI
Occupational Licensee	_ '	☐ Volunt	ary Cleanu	p Appli	icant	Other: _	,		
7. General Customer Inf	formation								
• -	Up e (Verifiable with the Texas Sec ection I is complete, skip to Se	• ,			⊠ <u>N</u>	hange in f o Change	-	Entity Ow	nership
8. Type of Customer:	☐ Corporation	☐ Individ	dual		☐ Sole Pro	prietorshi	p- D.B.A		
City Government	County Government	☐ Feder	al Governn	nent	☐ State Go	overnment			
Other Government	General Partnership	Limite	d Partners	nip	Other:				
	e (If an individual, print last name fi	irst: ex: Doe, John	n) <u>If ne</u> <u>belo</u>		tomer, enter pr	evious Cu	<u>stomer</u>	<u>End</u>	Date:
10. Mailing Address:									
City		State	Z	IP			ZIP + 4		
11. Country Mailing Info	rmation (if outside USA)		12. E-M	ail Ad	dress (if applica	able)			
13. Telephone Number	1	4. Extension o	r Code		15. Fax	Number	(if applica	ble)	
16. Federal Tax ID (9 digits	17. TX State Franchise Ta	x ID (11 digits)	18. DUN:	S Num	ber (if applicable)	19. TX	SOS Filin	g Numbei	(if applicable)
20. Number of Employee	es :		1		21. li	ndepende	ently Own	ed and Op	perated?
□ 0-20 □ 21-100	☐ 101-250 ☐ 251-500	501 and high	gher			Y	es	☐ No	
SECTION III: Re	gulated Entity Infor	mation							
	ntity Information (If 'New Reg	ulated Entity" is tity Name] Update to	Regul	lated Entity Inf	formation	⊠ Ne	•	application) * (See below)
23. Regulated Entity Nar	me (name of the site where the reg						PIR'		
CEQ-10400 (09/07)							√ 28 2		

24. Street Address of the Regulated											
Entity:				.,							
(No P.O. Boxes)	City			State		ZIP			Z	<u>IP + 4</u>	
			·								
25. Mailing Address:										<u> </u>	
Address:	City			State		ZIP			7	ZIP + 4	
26. E-Mail Address:	1 0.09		 		L						-
27. Telephone Numl	ber		28	B. Extension	n or Code	29.	Fax Num	ber (if app	licable)		
() -						()	-			
30. Primary SIC Cod	le (4 diait	s) 31. Seconda	ary SIC Cod	le (4 digits)	32. Primary N	IAICS C	ode			ry NAICS	Code
					(5 or 6 digits)			(5 or 6	aigits)		
34. What is the Prim	ary Bus	siness of this ent	ity? (Pleas	se do not rep	eat the SIC or NA	ICS des	cription.)				
	Questic	ns 34 - 37 addre	ss qeograp	hic location	n. Please refer	to the	instructi	ons for a	pplicab	ility.	
35. Description to	Ì										
Physical Location:											
36. Nearest City	!		Co	ounty		S	tate			Nearest	ZIP Code
37. Latitude (N) In	Decima	ı:	L	 	38. Longitu	ıde (W)	In De	cimal:			
Degrees	Minute		Seconds		Degrees			nutes		Seco	onds
										j	
39. TCFO Programs a	and ID N	lumbers Check all P	rograms and w	rite in the per	nits/registration num	nbers that	will be affe	cted by the	updates s	submitted on	this form or the
	and ID N	gram is not listed, che	ck other and wr	ite it in. See t	he Core Data Form	instruction	ns for additi	onal guidan	ce.		
39. TCEQ Programs a updates may not be made.	and ID N	lumbers Check all P gram is not listed, chec Districts	ck other and wr	rite in the perrite it in. See t	he Core Data Form	instruction	ns for additi	cted by the onal guidan azardous V	ce.		this form or the
updates may not be made.	If your Pro	gram is not listed, ched	ck other and wr	ite it in. See t	he Core Data Form Aquifer	instruction In	ns for additi dustrial Ha	onal guidan	ce.	☐ Munic	sipal Solid Waste
updates may not be made.	If your Pro	gram is not listed, che	ck other and wr	ite it in. See t	he Core Data Form	instruction	ns for additi dustrial Ha	onal guidan	ce.		sipal Solid Waste
updates may not be made. Dam Safety New Source Review	If your Pro	gram is not listed, ched Districts OSSF	ck other and wr	ite it in. See to	he Core Data Form Aquifer	instruction	ns for additi dustrial Ha	onal guidan	ce.	☐ Munic	cipal Solid Waste
updates may not be made.	If your Pro	gram is not listed, ched	ck other and wr	ite it in. See t	he Core Data Form Aquifer	instruction	ns for additi dustrial Ha	onal guidan	ce.	☐ Munic	cipal Solid Waste
updates may not be made. Dam Safety New Source Review Stormwater	If your Pro	gram is not listed, ched Districts OSSF	ck other and wr	te it in. See the Edwards Petroleur Tires	he Core Data Form Aquifer	instruction In	ns for additi dustrial Ha	onal guidan azardous V	ce.	☐ Munic	e ies
updates may not be made. Dam Safety New Source Review Stormwater	If your Pro	gram is not listed, chee Districts OSSF Title V - Air	ck other and wr	te it in. See the Edwards Petroleur Tires	ne Core Data Form Aquifer n Storage Tank	instruction In	ns for additi dustrial Ha WS	onal guidan azardous V	ce.	☐ Munic	e ies
updates may not be made. Dam Safety New Source Review Stormwater Voluntary Cleanu	If your Pro	gram is not listed, chee Districts OSSF Title V - Air Waste Water	ck other and wr	te it in. See the Edwards Petroleur Tires	ne Core Data Form Aquifer n Storage Tank	instruction In	ns for additi dustrial Ha WS	onal guidan azardous V	ce.	☐ Munic	e ies
updates may not be made. Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV:	w – Air Prep	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform	ck other and wr	te it in. See the Edwards Petroleur Tires	ne Core Data Form Aquifer In Storage Tank vater Agriculture	instruction In	ns for additions and the second secon	onal guidan azardous V	vaste	☐ Munio	e ies
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate	N - Air Prep	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning	ck other and wr	te it in. See the Edwards Edwards Petroleur Tires Wastew	ne Core Data Form Aquifer In Storage Tank vater Agriculture 41.	instruction In	ns for additional Harmonian MS Seed Oil Vater Right	onal guidan azardous V	vaste	☐ Munic	e ies
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb	w – Air Prep Brant	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform	ck other and wr	te it in. See the Edwards Edwards Petroleur Tires Wastew	ne Core Data Form Aquifer In Storage Tank vater Agriculture 41.	instruction In	ns for additions and street in the street in	onal guidan azardous V ts ff Envir	vaste Ponme	☐ Munio ☐ Sludg ☐ Utilif ☐ Other	e e ies :
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate	w – Air Prep Brant	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning	ck other and wr	te it in. See the Edwards Edwards Petroleur Tires Wastew	ne Core Data Form Aquifer In Storage Tank vater Agriculture 41.	instruction In	ns for additions and street in the street in	onal guidan azardous V ts ff Envir	vaste Ponme	☐ Munio	e e ies :
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb	N - Air Prep Brani Der 0	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning 43. Ext./Code	ation (91	te it in. See the Edwards Edwards Petroleur Tires Wastew	ne Core Data Form Aquifer In Storage Tank vater Agriculture 41.	instruction In	ns for additions and street in the street in	onal guidan azardous V ts ff Envir	vaste Ponme	☐ Munio ☐ Sludg ☐ Utilif ☐ Other	e e ies :
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature	Preperation of the second of t	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning 43. Ext./Code orized Signs I certify, to the	ation 44. F (91)	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 8) 662-6	Aquifer In Storage Tank vater Agriculture 41. 41. 42. 41. 43. 44. 44. 44. 45.	instruction In	ns for additional Harmonian Provider Right	onal guidan azardous V ts ff Envir	vaste conme	☐ Munio ☐ Sludg ☐ Utilif ☐ Other ntal Sc phillips is true as	e e e e e e e e e e e e e e e e e e e
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature and that I have signa	Prep Brant ber Auth e below ature au	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning 43. Ext./Code orized Signs , I certify, to the thority to submit	ation 44. F (91 ature best of my	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 8) 662-6	Aquifer In Storage Tank vater Agriculture 41. 41. 42. 41. 43. 44. 44. 44. 45.	instruction In	ns for additional Harmonian Provider Right	onal guidan azardous V ts ff Envir	vaste conme	☐ Munio ☐ Sludg ☐ Utilif ☐ Other ntal Sc phillips is true as	e e e e e e e e e e e e e e e e e e e
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature and that I have signa updates to the ID nu	Prep Brand Brand Ber Der Der Der Der Der Der Der Der Der D	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning 43. Ext./Code orized Signa , I certify, to the thority to submit dentified in field	ation 44. F (91 ature best of my this form of	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 18) 662-6 knowledgon behalf of	Aquifer Aquifer In Storage Tank vater Agriculture 41. 41. 42. 41. 44. 44. 44. 44.	Title: 5. E-Ma Cate. K	ns for additional had a seed Oil Start	onal guidan azardous V ts ff Envir	vaste conme	☐ Munio ☐ Sludg ☐ Utilif ☐ Other ntal Sc phillips is true as	e e e e e e e e e e e e e e e e e e e
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature and that I have signal updates to the ID nu (See the Core Data	Prep Brand Ber D Auth e below ature au mbers i	gram is not listed, chee Districts OSSF Title V - Air Waste Water Waste Water arer Inform ning 43. Ext./Code orized Signs I certify, to the thority to submit dentified in field in structions for in	ation 44. F (91 ature best of my t this form of 139.	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 18) 662-6 knowledgon behalf of	Aquifer In Storage Tank vater Agriculture 41. If 48. 5171 K It is, that the infoof the entity sp who should si	Title: 5. E-Ma Cate.K	s for addition of the state of	onal guidan azardous V ts ff Envir as ing@co	conme connection	☐ Munio ☐ Sludg ☐ Utilif ☐ Other Intal Sc phillips is true and/or as in	e ies ientist com nd complete, required for the
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature and that I have signal updates to the ID nu (See the Core Data)	Prepe Brandoer O Auth e below tumbers i Form i	gram is not listed, chee Districts OSSF Title V - Air Waste Water arer Inform ning 43. Ext./Code orized Signa I certify, to the thority to submit dentified in field instructions for mophillips Comp	ation 44. F (91 ature best of my t this form of 139.	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 18) 662-6 knowledgon behalf of	Aquifer Aquifer In Storage Tank vater Agriculture 41. 41. 42. 41. 44. 44. 44. 44.	Title: 5. E-Ma Cate.K	s for additional Harden NS Seed Oil State Right Sta	ts ff Envir	onnoco s formeld 9 ar	☐ Munio ☐ Sludg ☐ Utilif ☐ Other Intal Sc phillips is true and/or as in	ientist com d complete, required for the
Dam Safety New Source Review Stormwater Voluntary Cleanu SECTION IV: 40. Name: Kate 42. Telephone Numb (832) 486-2110 SECTION V: 46. By my signature and that I have signal updates to the ID nu (See the Core Data)	Prepe Brandoer O Auth e below tumbers i Form i	gram is not listed, chee Districts OSSF Title V - Air Waste Water Waste Water arer Inform ning 43. Ext./Code orized Signs I certify, to the thority to submit dentified in field in structions for in	ation 44. F (91 ature best of my t this form of 139.	te it in. See the Edwards Edwards Petroleur Tires Wastew Fax Numbe 18) 662-6 knowledgon behalf of	Aquifer In Storage Tank vater Agriculture 41. If 48. 5171 K It is, that the infoof the entity sp who should si	Title: 5. E-Ma Cate.K	s for additional had a seed Oil Start Start Start Start Start Start Section S	onal guidan azardous V ts ff Envir as ing@co	ronmeronocops formeld 9 ar	☐ Munio ☐ Sludg ☐ Utilif ☐ Other Intal Sc phillips is true and/or as in	ientist com de complete, required for the ions - West 6-4050

TCEQ-10400 (09/07)

e de la companie

APIRTIAN 28 2010

Page 2 of 2

r 25.5.

1.0 INTRODUCTION

ConocoPhillips Company (ConocoPhillips) operates a natural gas production facility known as the Sugarkane Central Battery 1 (Sugarkane Facility), near Pawnee in Live Oak County, Texas. The Sugarkane Facility is currently authorized under Permit by Rule (PBR) Registration Number 87632.

1.1 Purpose

The purpose of this application is to revise PBR Registration Number 87632 to incorporate an additional compressor driven by a 670 hp natural gas fired internal combustion engine, four 500 bbl condensate tanks, and associated components. In order to accommodate the aforementioned changes, ConocoPhillips would like to reduce the 20% safety factor represented in the PBR Registration Application dated March 5, 2009 to 10%. The associated Texas Commission on Environmental Quality (TCEQ) forms and emissions data are presented as shown in Section 1.2 below.

1.2 Document Organization

This Permit by Rule Registration package is organized in the following format:

- Section 2 Process Description;
- Section 3 Emission Summary;
- Section 4 Regulatory Review;
- Section 5 SCREEN3 Summary;
- Appendix A TCEQ Forms and associated PBR Checklists;
- Appendix B Plot Plan;
- Appendix C New Emission Calculations;
- Appendix D Emission Calculations (March 5, 2009);
- Appendix E Engine Specifications;
- Appendix F SCREEN3 Analysis; and
- Appendix G EPAY Receipt.

APIRTJAN 28 2010

2.0 PROCESS DESCRIPTION

The Sugarkane Facility receives production from several gas wells that flow continuously throughout the year. Produced gas flows through two separator systems where the hydrocarbon condensate and water are removed. Condensate liquids from the low pressure separators will flow to one of ten condensate storage tanks. Produced water flows to a water storage tank. Liquids from two JATCO units, the two fuel scrubbers, and two discharge compressor scrubbers will flow to a common slop tank. Liquids are removed from the site via tank truck, resulting in VOC emissions from truck loading.

Tank and loading emissions are vented to a vapor recovery unit (VRU) with 95% control, which accounts for 5% VRU downtime. During VRU downtime, the vapors are routed to a flare with 98% destruction efficiency.

The natural gas product from the low pressure separator is compressed with a compressor driven by a 633 hp natural gas fired internal combustion engine and a compressor driven by a 670 hp natural gas fired internal combustion engine. During compressor downtime, low-pressure gas will be sent to a flare with 98% destruction efficiency.

There are two additional condensate tanks installed on site but are out of service.

Fugitive emissions may occur from valves, flanges, compressor seals, and other components.

APIR 8 JAN 28 2010

TRC Companies, Inc.

January 2010

3.0 EMISSION SUMMARY

This section includes a discussion of the calculation methodology used to determine facility emissions. Detailed calculations pertaining to this PBR Registration Application are included in Appendix C. The calculations relating to the existing facility are included as Appendix D of this application.

3.1 Site-Wide Emissions

Emissions associated with the operation of this engine were estimated using EPA-approved guidance. Engine manufacturer's specifications are included in Appendix E. A summary of site-wide emissions resulting from the operation of the facility is included as Table 3-1.

Table 3-1
Emissions Summary

Description (FIN)	PN	M ₁₀	V	ОС	N	Ox	C	O	S	02	Н	2S	H	APs
Description (FIIA)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/ħr	tpy	lb/hr	tpy
*Total Existing Facility Emissions	0.059	0.261	3.654	16.308	11.637.	14.193	51.426	25.110	D 333	0.135	0.004	0.002	0.414	1.836
Condensate Tank 7 (T-7)		1	0.000	0.033	-	- 1		and the second second		-	0.000	0.000	0.000	0.001
Condensate Tank 8 (T-8)			0,000	0.033	1.		-	-	<u>-</u>	-	0.000	0.000	0.000	0.001
Condensate Tank 9 (T-9)	-]-	0.000	0.033	7	-	-	-	-	-	0.000	0.000	0.000	0.001
Condensate Tank 10 (T-10)	-	1	0.000	0.033	-	' /	-	-	-	-	0.000	0.000	0.000	0.001
Compressor Emissions (C-2)	0.061	0.269	1.625	7.117	1.250	14.233	6.499	28.467	0.293	0.320	-	-	0.558	2.443
Additional Flare Emissions from C-2 (F1MSS-VRU)	0.912	0.017	-		0.101	0.001	0.865	0.005	0.001	0.000	-	•	-	-
Fugitive Emissions (FUG)	. <u>.</u> .	-	0.082	0.361	-	•			-	-	-	-	-	-
Total	0.132	0.546	5363	23.918	14.988	28.427	58.791	53.582	0.626	0.455	0.004	0.002	0.972	4.282

^{*}Changed 20% Safety Factor Represented in Permit by Rule Application Dated March 5, 2009 to 10% Safety Factor

APIRT
JAN 28 7010

January 2010

TRC Companies, Inc.

Table 1
ConocoPhillips Company
Emissions Summary
Sugarkane Central Battery 1

Table 3-1

Emissions Summary

Description	NA	PM_{10}	Λ	VOC	N	NOx	00	Ö)S	SO ₂	StH	S	HAPs	Ps
moral ibrion	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
*Total Existing Facility Emissions	0.059	0.261	3.654	16.308	11.637	14.193	51.426	25.110	0.333	0.135	0.004	0.002	0.414	1.836
Compressor Emissions (C-2)	0.061	0.269	1.625	7.117	3.250	14.233	6.499	28.467	0.293	0.320	,	1	0.558	2.443
Additional Flare Emissions (F1MSS-	0.012	0.017	0.000	0.132	0.101	0.001	0.865	0.005	0.001	0.000	0.000	0.000	0.000	0.004
Fugitive Emissions (FUG)	1	,	0.082	0.361	ı	1	1		-	ı	1	ı	ı	I
	0.132	.0.546	6 5361 23.918	***********	14.988	28.427	58.791	53.582	0.626	0.455	0.004	0.002	0.972	4,283

*Changed 20% Safety Factor Represented in Permit by Rule Application Dated March 5, 2009 to 10% Safety Factor

3.2 Tank Emissions

The emissions for the condensate tanks T-1, T-2, T-3, T-4, T-5, and T-6 were calculated in the PBR Registration Application dated March 5, 2009 and are included in Appendix D. As T-7, T-8, T-9, and T-10 are exactly the same as the aforementioned tanks; they will have the same emissions as represented in the previous PBR Registration Application.

3.3 Compressor Emissions

Compressor engine emission calculations are based on project-specific vendor data and emission factors from AP-42 Chapter 3.2 Table 3.2-2. Annual emission rates are based on the maximum rated engine capacity and 8,760 hours per year of operation. As the vendor data in Appendix E shows, the total hydrocarbon emission rate for THC is 3.04 g/bhp-hr. The VOC composition of the gas fueling the engine is approximately 15%, making the VOC emission rate approximately 0.456 g/bhp-hr. To be conservative, ConocoPhillips is requesting authorization for a VOC emission rate of 1 g/bhp-hr. ConocoPhillips would also like to adjust the NOx and CO factors from 1.5 g/bhp-hr and 1.84 g/bhp-hr to 2 g/bhp-hr and 4 g/bhp-hr, respectfully to match the maximum allowable emission rate allowed for by New Source Performance Standard (NSPS) JJJJ.

The short term and long term SO₂ emission representations were based on 20 grains of total sulfur per 100 scf, and 5 grains of total sulfur per 100 scf, respectively, for conservatism.

3.4 Flare Emissions

Due to the addition of the four condensate tanks, additional VOC emissions from standing and breathing losses will be burned by the flare (F1MSS-VRU) during the 5% VRU downtime. This application reflects only F1MSS-VRU as it is the only flare affected by the changes listed in Section 1. F2MSS-BDWN is addressed in the previous application.

The NOx and CO emissions from flare waste combustion were calculated using *TCEQ Technical Guidance Chemical Sources – Flares and Vapor Oxidizers* (Draft RG-109). The SO₂ and PM10 emissions from flare waste combustion were calculated using emission factors from USEPA Compilation of Air Pollution Emission Factors (AP-42) Chapter 1.3 Table 1.3-2.

3.5 Fugitive Emissions

Fugitive emissions for the site were calculated using the emission factors taken from the TCEQ Technical Guidance Document "Fugitive Emissions – Equipment Leak Fugitives" dated October 2000 for Oil and Gas Production Operations. The VOC fraction of total hydrocarbons was calculated using EPA emission factors for Gas & Light Oil,

JAN 28 2010

"Calculation Notebook for Oil and Gas Production Equipment Fugitive Emissions" API Publication No. 4638, April 1996, page 15. The emissions and associated calculations are included in Table 4 in Appendix C and includes a 10% safety factor.

APIRTJAN 28 2010

TRC Companies, Inc.

January 2010

Table 2 ConocoPhillips Company **Compressor Emission Calculations** Sugarkane Central Battery 1 **Uncontrolled Emissions**

Fuel Consumption

5.03 MMBtu/hr, LHV 5.58 MMBtu/hr, HHV

0.005 MMcf/hr 0.11 MMcf/day

40.77 MMcf/yr

Exhaust Flow

4,088 acfm **Exhaust Velocity**

124.9 ft/sec

Brake-Specific Fuel Consumption

7,510 Btu/bhp-hr

Operating Schedule

8,760 hr/yr **Engine Output**

670 bhp

Number of Engines

Fuel Heating Value

1,081 Btu/cf LHV

1,199 Btu/cf HHV

Stack Inner Diameter

10 inches

Exhaust Temperature

985 F

Pollutant		Emission	Factor		Emissions	(1 engine)	Emissions (1 e	ngines) (10%)
	lb/MMBtu	kg/MMBtu	g/bhp-hr	Ref	lb/hr	ton/yr	lb/hr	ton/yr
PM _{2.5}	9.99E-03	-	-	1, 2	0.06	0.24	0.06	0.27
PM ₁₀	9.99E-03	-	-	1, 2	0.06	0.24	0.06	0.27
SO ₂ - short term	4.77E-02	-	-	6	0.27	-	0.29	-
SO ₂ - long term	1.19E-02	-	-	7	-	0.29	-	0.32
NO _x	-	-	2.00	3	2.95	12.94	3.25	14.23
co	-	-	4.00	3	5.91	25.88	6.50	28.47
voc		-	1.00	3	1.48	6.47	1.62	7.12
CO ₂	-	5.28E+01	-	4	649.31	2,843.98	714.24	3128.38
CH₄	-	5.90E-03	-	4	0.07	0.32	0.08	0.35
N₂O	-	1.00E-04	-	4	1.23E-03	5.39E-03	1.35E-03	5.93E-03
1,1,2,2-Tetrachloroethane	< 4.00E-05	-	-	1	2.23E-04	9.78E-04	2.46E-04	1.08E-03
1,1,2-Trichloroethane	< 3.18E-05	-	-	1	1.77E-04	7.77E-04	1.95E-04	8.55E-04
1,3-Butadiene	2.67E-04	-	-	1	1.49E-03	6.53E-03	1.64E-03	7.18E-03
1,3-Dichloropropene	< 2.64E-05	-	-	1	1.47E-04	6.45E-04	1.62E-04	7.10E-04
2-Methylnaphthalene	3.32E-05	-	-	1	1.85E-04	8.11E-04	2.04E-04	8.93E-04
2,2,4-Trimethylpentane	2.50E-04	-	-	1	1.40E-03	6.11E-03	1.53E-03	6.72E-03
Acenaphthene	1.25E-06	-	-	1	6.98E-06	3.06E-05	7.67E-06	3.36E-05
Acenaphthylene	5.53E-06	-	-	1	3.09E-05	1.35E-04	3.39E-05	1.49E-04
Acetaldehyde	8.36E-03	-	-	1	4.67E-02	2.04E-01	5.13E-02	2.25E-01
Acrolein	5.14E-03	-	-	1	2.87E-02	1.26E-01	3.16E-02	1.38E-01
Benzene	4.40E-04	-	-	1	2.46E-03	1.08E-02	2.70E-03	1.18E-02
Benzo(b)fluoranthene	1.66E-07	-	-	1	9.26E-07	4.06E-06	1.02E-06	4.46E-06
Benzo(e)pyrene	4.15E-07	-	-	1	2.32E-06	1.01E-05	2.55E-06	1.12E- 0 5
Benzo(g,h,i)perylene	4.14E-07		-	1	2.31E-06	1.01E-05	2.54E-06	1.11E-05
Biphenyl	2.12E-04	-	-	1	1.18E-03	5.18E-03	1.30E-03	5.70E-03
CarbonTetrachloride	< 3.67E-05	-	-	1	2.05E-04	8.97E-04	2.25E-04	9.87E-04
Chlorobenzene	< 3.04E-05	-	-	1	1.70E-04	7.43E-04	1.87E-04	8.17E-04
Chloroform	< 2.85E-05	-	-	1	1.59E-04	6.97E-04	1.75E-04	7.66E-04
Chrysene	6.93E-07	-	-	1	3.87E-06	1.69E-05	4.25E-06	1.86E-05
Ethylbenzene	3.97E-05	- ,	- :	1	2.22E-04	9.70E-04	2.44E-04	1.07E- 0 3
Ethylene Dibromide	< 4.43E-05	-	-	1	2.47E-04	1.08E-03	2.72E-04	1.19E-03
Fluoranthene	1.11E-06	-	-	1	6.19E- 0 6	2.71E-05	6.81E-06	2.98E-05
Fluorene	5.67E-06		-	1	3.16E-05	1.39E-04	3.48E-05	1.52E-04
Methanol	2.50E-03		-	1	1.40E-02	6.11E-02	1.53E-02	6.72E- 0 2
Methylene Chloride	2.00E-05	-	-	1	1.12E-04	4.89E-04	1.23E-04	5.38 E -04
n-Hexane	1.11E-03	- ,	-	1	6.19E-03	2.71E-02	6.81E-03	2.98E-02

APIRT

JAN 28 2010

anuary 2010

TRC Companies, Inc.

Table 2 **Compressor Emission Calculations** Sugarkane Central Battery 1 **Uncontrolled Emissions** (continued)

Pollutant		Emission	Factor		Emissions	(1 engine)	Emissions (1 en	gines) (10%)
	lb/MMBtu	kg/MMBtu	g/bhp-hr	Ref	lb/hr	ton/yr	lb/hr	ton/yr
Naphthalene	7.44E-05	-	-	1	4.15E-04	1.82E-03	0.00	0.00
PAH	2.69E-05	-	- [1	1.50E-04	6.57E-04	1.65E-04	7.23E-04
Phenanthrene	1.04E-05	-	-	1	5.80E-05	2.54E-04	6.38E-05	2.80E-04
Phenol	2.40E-05	-	-	1	1.34E-04	5.87E-04	1.47E-04	6.45 E -04
Pyrene	1.36E-06	-	-	1	7.59E-06	3.32E-05	8.35E-06	3.66E-05
Styrene	< 2.36E-05	-	- 1	1	1.32E-04	5.77E-04	1.45E-04	6.34E-04
Tetrachloroethane	2.48E-06	-	-	1	1.38E-05	6.06E-05	1.52E-05	6.67 E -05
Toluene	4.08E-04	-] - [1	2.28E-03	9.97E-03	2.50E-03	1.10E-02
Vinyl Chloride	1.49E-05	-	1 - 1	1	8.31E-05	3.64E-04	9.15E-05	4.01 E-04
Xylene	1.84E-04		- 1	1	1.03E-03	4.50E-03	1.13E-03	4.95E-03
Formaldehyde	-	-	0.270	3	0.40	1.75	0.44	1.92
Other HAP6	1.94E-02	-	- 1	1	0.11	0.47	0.12	0.52
Total HAP		-	I - I		0.51	2.22	0.56	2.44

Reference:

- 1. Compilation of Air Pollutant Emission Factors, AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources, Table 3.2-2
- 2. Filterable plus condensable
- 3. Based on vendor data
- California Climate Action Registry General Reporting Protocol, Version 2.2, March 2007, Tables C.5 & C.6
 Hazardous air pollutants other than formaldehyde
 Based on 20 grains sulfur/100 scf of natural gas

- 7. Based on 5 grains sulfur/100 scf of natural gas

APIRT JAN 28 2010

January 2010

ConocoPhillips Company SCREEN3 Modeling Results

EP.	DESCRIPTION	POLLUTANT	EMISSION RATE	MAX1- HOUR MPACT	1-Hour NAAGS Standard	S-HOUR IMPACT	NAAGE Shandard Shandard	8-HOUR IMPACT	8-Hour SDAAN Standard	24-HOUR IMPACT	24-Hour NAAGS Standard	ANNUAL	Annual NAAOS
						·	ć	ì				, (
			(LBS/HK)	(hg/m²)	(mg/m²)	('m/grl)	(ˈm/bd)	(µg/m²)	(μg/m²)	(ˈmð/m´)	(µg/m²)	(mg/m²)	(mg/m ₂)
		CONVERSION FACTOR		1.00		0.9		0.7		6.0		90.0	
		GENERIC	7.94	134.80		121.32		94.36		53.92		10.78	
٦ ا	Compressor 1												
		NOC	0.473	8.03	N/A	7.23	V/A	5.62	N/A	3.21	A/A	0.64	A/A
		PM 2.5/PM ₁₀	0.061	1.03	N/A	0.92	A/N	0.72	A/N	0.41	35.00	0.08	15.0
		SO2	0.024	0.41	N/A	0.37	1,300.00	0.29	N/A	0.16	364.00	0.03	78.0
		XON	3.069	52.10	A/N	46.89	A/A	36.47	A/N	20.84	N/A	1.67	100.0
		CO	4.609	78.25	40,000.00	70.42	N/A	54.77	10,000.00	31.30	N/A	6.26	ΑN
		HAP	0.286	4.86	N/A	4.37	N/A	3.40	N/A	1.94	A/A	0.39	A/A
		CONVERSION FACTOR		1.00		6.0		0.7		0.4		0.08	
		GENERIC	7.94	126.40		121.32		94.36		53.92		10.78	
C-7	Compressor 2												
		200	1.625	25.87	N/A	23.28	N/A	18.11	N/A	10.35	A/N	2.07	ΑΝ
		PM 2.5/PM10	0.123	1.95	ΝΆ	1.76	N/A	1.37	N/A	84.0	35.00	0.16	15.0
		SO2	0.293	4.66	N/A	4.19	1,300.00	3.26	N/A	1.86	364.00	0.37	78.0
		XON	3.250	51.73	N/A	46.56	N/A	36.21	N/A	20.69	A/A	1.66	100.0
		00	6.489	103.46	40,000.00	93.12	N/A	72.43	10,000.00	41.39	ΑΝ	8.28	ΑΝ
		HAP	0.558	8.88	N/A	7.99	N/A	6.22	N/A	3.55	N/A	0.71	N/A
Cumu	Cumulative Impacts										1		
		voc		33.90	ΝΑ	30.51	N/A	23.73	N/A	13.56	N/A	2.71	A/A
		PM 2.5/PM ₁₀		2.98	N/A	2.68	A/A		N/A	1.19	35.00	0.24	15.00
		SO2		5.07	N/A	4.56	1,300.00		N/A		364.00	0.41	78.00
		XON		103.84	N/A	93.45	N/A		A/N	41.53	N/A	3.32	100.00
		00		181.71	40,000.00	163.54	N/A	127.20	10,000.00		N/A	14.54	A/A
		HAP		13.74	ΑΝ	12.36	N/A	9.61	A/A		N/A	1.10	N/A
					Total NOx:							3.32	
			Background Concentration for County:	ncentration	for County:							20.00	
				Cumul	Cumulative Total:							23.32	100.0

*Nitrogen Dioxide (NO2)/NOx ratio of (0.15+(0.5/2)) applied for IC Engine with a NOx Emission Rate 2-10 g/hp-hr per 30 TAC 106.512(6)(A), Figure 1
**Background Concengration = 20 ug/m³ for Region 16
***Notes max allowable concentrations for PM2.5 as they are more stringent than concentrations for PM10.
***Secondary Standards

APIRT JAN 28 2010 TRC Companies, Inc.

```
14:55:22
 *** SCREEN3 MODEL RUN ***
 *** VERSION DATED 96043 ***
C-1 Sugarkane 1-11-10
SIMPLE TERRAIN INPUTS:
   SOURCE TYPE
                                      POINT
                                    1.00000
   EMISSION RATE (G/S)
                            =
   STACK HEIGHT (M)
                                     5.1800
   STK INSIDE DIAM (M)
                                      .2540
   STK EXIT VELOCITY (M/S)=
STK GAS EXIT TEMP (K) =
AMBIENT AIR TEMP (K) =
                                  33.4373
725.9300
                                   293.0000
   RECEPTOR HEIGHT (M)
                                      .0000
   URBAN/RURAL OPTION
                            =
                                      RURAL
   BUILDING HEIGHT (M)
                                      .0000
   MIN HORIZ BLDG DIM (M) =
                                      .0000
   MAX HORIZ BLDG DIM (M) =
                                      .0000
THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED.
THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.
   STACK EXIT VELOCITY WAS CALCULATED FROM
   VOLUME FLOW RATE = 3590.0000
                                         (ACFM)
BUOY, FLUX =
                 3.154 \text{ M**4/S**3}; \text{ MOM. FLUX} =
                                                     7.278 M**4/S**2.
*** FULL METEOROLOGY ***
**********
*** SCREEN AUTOMATED DISTANCES ***
*** TERRAIN HEIGHT OF
                           O. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***
  DIST
            CONC
                              U10M
                                      USTK
                                           MIX HT
                                                      PLUME
                                                               SIGMA
                                                                       SIGMA
          (UG/M**3)
   (M)
                       STAB
                             (M/S)
                                     (M/S)
                                              (M)
                                                               Y (M)
                                                     HT (M)
                                                                       Z (M)
                                                                               DWASH
           .0000
                                             320.0
                               1.0
                                       1.0
                                                      55.89
                                                                        1.58
                                                                1.62
                                                                                 NO
   100.
                                            3200.0
           134.1
                              10.0
                                      10.0
                                                      10.25
                                                               12.55
                                                                         7.58
                                                                                 NO
   200.
                               8.0
                                       8.0
           121.4
                                                                        8.69
                                            2560.0
                                                      11.52
                                                               15.67
                                                                                 NO
   300.
           105.1
                               5.0
                                       5.0
                                            1600.0
                                                      15.32
                                                               22.80
                                                                       12.44
                                                                                 NO
   400.
           89.44
                               4.0
                                       4.0
                                            1280.0
                                                      17.86
                                                               29.68
                                                                       15.69
                                                                                 NO
   500.
           77.83
                               3.0
                                       3.0
                                             960.0
                                                      22.08
                                                               36.47
                                                                       18.92
                                                                                 NO
                               2.5
                                       2.5
   600.
           68.70
                                             800.0
                                                      25.46
                                                               43.11
                                                                       21.99
                                                                                 NO
   700.
                                                      25.46
           61.18
                                             800.0
                                                               49.53
                                                                        24.72
                                                                                 NO
                               2.0
   800.
           55.86
                                       2.0
                                             640.0
                                                      30.53
                                                               56.04
                                                                       27.74
                                                                                 NO
   900.
           50.74
                                             640.0
                               2.0
                                       2.0
                                                      30.53
                                                               62.31
                                                                       30.34
                                                                                 NO
  1000.
           46.78
                                             480.0
                                                      38.98
                                                               68.81
                                                                       33.51
                                                                                 NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                      10.0 3200.0
    95.
          134.8
                              10.0
                                                     10.25
                                                              12.08
                                                                        7.31
                                                                                 NO
          MEANS NO CALC MADE (CONC = 0.0)
 DWASH=NO MEANS NO BUILDING DOWNWASH USED
 DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
 DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
 DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB
```

Page 1

 APIRT
JAN 28 2010

* SIMPLE ELEV	ATED TERRAIN ******	PROCEDURE	EN.OUT * *****
TERRAIN HT (M)	DISTANCE MINIMUM	RANGE (M) MAXIMUM	
0.	1.	1000.	
*** SUMMARY	**************************************	EL RESULTS	***
CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)
SIMPLE TERRAIN	134.8	95.	0.
**************************************	CLUDE BACKGRO	UND CONCENT	RATIONS **

Page 2

APIRT
JAN 28 2010

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

C-2 Sugarkane

SIMPLE TERRAIN INPUTS: SOURCE TYPE **POINT** EMISSION RATE (G/S) 1.00000 STACK HEIGHT (M) 5.2700 STK INSIDE DIAM (M) .2540 STK EXIT VELOCITY (M/S)= STK GAS EXIT TEMP (K) = AMBIENT AIR TEMP (K) = 33.4373 802.5900 293.0000 RECEPTOR HEIGHT (M) .0000 = URBAN/RURAL OPTION = RURAL BUILDING HEIGHT (M) = .0000 MIN HORIZ BLDG DIM (M) = .0000 MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF $10.0\,$ METERS WAS ENTERED.

STACK EXIT VELOCITY WAS CALCULATED FROM VOLUME FLOW RATE = 3590.0000 (ACFM)

BUOY. FLUX = 3.358 M**4/S**3; MOM. FLUX = 6.583 M**4/S**2.

*** FULL METEOROLOGY ***

*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
1.	. 0000	1	1.0	1.0	320.0	58.42	1.57	1.53	NO
100.	126.3	3	10.0	10.0	3200.0	10.58	12.55	7.59	NO
200.	114.3	4	8.0	8.0	2560.0	11.91	15.68	8.71	NO
300.	99.26	4	5.0	5.0	1600.0	15.90	22.81	12.47	NO
400.	84.95	4	4.0	4.0	1280.0	18.56	29.70	15.73	NO
500.	73.58	4	3.0	3.0	960.0	22.99	36.50	18.98	NO
600.	64.92	4	2.5	2.5	800.0	26.53	43.15	22.06	NO
700.	58.45	4	2.5	2.5	800.0	26.53	49.56	24.79	NO
800.	52.99	4	2.0	2.0	640.0	31.84	56.09	27.84	NO
900.	48.52	4	2.0	2.0	640.0	31.84	62.35	30.43	NO
1000.	44.17	4	2.0	2.0	640.0	31.84	68.55	32.98	NO
MAXIMUM	1-HR CONCENT	RATION	AT OR	BEYOND	1. M	:			

98. 126.4 3 10.0 10.0 3200.0 10.58 12.43 7.52

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED

DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=S\$ MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

* SUMMARY OF TERRAIN HEIGHTS ENTERED FOR * Page 1

APIRT
JAN 28 2010

NO

* SIMPLE ELE	VATED TERRAIN	PROCEDURE	N.OUT * *****				
TERRAIN HT (M)	DISTANCE MINIMUM	RANGE (M) MAXIMUM					
0.	1.	1000.					

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)				
SIMPLE TERRAIN	126.4	98.	0.				

APIRT

JAN 28 2010

APPENDIX G EPAY RECEIPT

APIRTJAN 28 2010

TRC Companies, Inc.

January 2010

Texas Commission on Environmental Quality Permit by Rule Applicability Checklist Title 30 Texas Administrative Code § 106.4

The following checklist was developed by the Texas Commission on Environmental Quality (TCEQ), Air Permits Division, to assist applicants in determining whether or not a facility meets all of the applicable requirements. Before claiming a specific Permit by Rule (PBR), a facility must first meet all of the requirements of Title 30 Texas Administrative Code § 106.4 (30 TAC § 106.4), "Requirements for Permitting by Rule." Only then can the applicant proceed with addressing requirements of the specific Permit by Rule being claimed.

The use of this checklist is not mandatory; however, it is the responsibility of each applicant to show how a facility being claimed under a PBR meets the general requirements of 30 TAC § 106.4 and also the specific requirements of the PBR being claimed. If all PBR requirements cannot be met, a facility will not be allowed to operate under the PBR and an application for a construction permit may be required under 30 TAC § 116.110(a).

Registration of a facility under a PBR can be performed by completing Form PI-7 (Registration for Permits by Rule) or Form PI-7-CERT (Certification and Registration for Permits by Rule). The appropriate checklist should accompany the registration form. Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.state.tx.us/permitting/air/nav/air pbr.html.

1. 30 TAC § 106.4(a)(1) & (4): Emission limits						
List emissions in tpy for each facility (add additional pages or table if needed): $SO_2 = 0.455$ $PM_{10} = 0.546$ $VOC = 23.918$ $NO_x = 28.427$ $CO = 58.791$ $Other$ $HAPs = 4.282$ $SO_2 = PM_{10} = VOC = NO_x = CO = Other = SO_2 = PM_{10} = VOC = NO_x = CO = Other = Total 0.455 0.546 23.918 28.427 58.791 4.282$						
 Are the SO₂, PM₁₀, VOC, or other air contaminant emissions claimed for each facility in this PBR submittal less than 25 tpy? Are the NO_x and CO emissions claimed for each facility in this PBR submittal less than 250 tpy? If the answer to both is "Yes," continue to the question below. If the answer to either question is "No," a PBR cannot be claimed. 	☑ YES ☐ NO					
Has any facility at the property had public notice and opportunity for comment under 30 TAC Section 116 for a regular permit or permit renewal? (This does not include public notice for voluntary emission reduction permits, grandfathered existing facility permits, or federal operating permits.) If "Yes," skip to Section 2. If "No," continue to the questions below.						
If the site has had no public notice, please answer the following: • Are the SO ₂ , PM ₁₀ , VOC, or other emissions claimed for all facilities in this PBR submittal less than 25 tpy? • Are the NO _x and CO emissions claimed for all facilities in this PBR submittal less than 250 tpy? If the answer to both questions is "Yes," continue to Section 2. If the answer to either question is "No," a PBR cannot be claimed. A permit will be required under Chapter 116.						
2. 30 TAC § 106.4(a)(2): Nonattainment check						
Are the facilities to be claimed under this PBR located in a designated ozone nonattainment county? If "Yes," please indicate which county by checking the appropriate box to the right. (Marginal) - Hardin, Jefferson, and Orange counties (BPA) (Moderate) - Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and Waller counties (HGA) (Moderate) - Collin, Dallas, Denton, Ellis, Johnson, Kaufman, Parker, Rockwall, and Tarrant counties (DFW)						
If "Yes," to any of the above, continue to the next question. If "No," continue to Section 3.						
ICEQ - 10149 (Revised 11/05) 106.4 Checklist for Permits by Rule General Requirements This form for use by facilities subject to air quality permit requirements	110					

and may be revised periodically. (APDG 4999v6)

Permit by Rule General Applicability Checklist 30 TAC § 106.4

 Does this project trigger a nonattainment review? To determine the answer, review the information below: Is the project's potential to emit (PTE) for emissions of VOC or NO_x increasing by 100 tpy or more? PTE is the maximum capacity of a stationary source to emit any air pollutant under its worst-case physical and operational design unless limited by a permit, rule, or made federally enforceable by a certification. Is the site an existing major nonattainment site and are the emissions of VOC or NO_x increasing by 40 tpy or more? 	□YES □NO				
If needed, attach contemporaneous netting calculations per nonattainment guidance. Additional information can be found at: www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr_table8.html and www.tceq.state.tx.us/permitting/air/nav/air_docs_newsource.html					
If "Yes," to any of the above, the project is a major source or a major modification and a PBR may not be used. A Nonattainment Permit review must be completed to authorize this project. If "No," continue to Section 3.					
3. 30 TAC § 106.4(a)(3): Prevention of Significant Deterioration (PSD) check					
Does this project trigger a review under PSD rules? To determine the answer, review the information below: • Are emissions of any regulated criteria pollutant increasing by 100 tpy of any criteria pollutant at a named source? • Are emissions of any criteria pollutant increasing by 250 tpy of any criteria pollutant at an unnamed source? • Are emissions increasing above significance levels at an existing major site?	☐YES ☑NO☐YES ☑NO☐YES ☑NO☐				
PSD information can be found at: www.tceq.state.tx.us/permitting/air/forms/newsourcereview/tables/nsr table9.html and www.tceq.state.tx.us/permitting/air/nav/air docs newsource.html					
If "Yes," to any of the above, a PBR may not be used . A PSD Permit review must be completed to authorize the project. If "No," continue to Section 4.					
4. 30 TAC § 106.4(a)(6): Federal Requirements	7-11-2 				
 Will all facilities under this PBR meet applicable requirements of Title 40 Code of Federal Regulations (40 CFR) Part 60, New Source Performance Standards (NSPS)? If "Yes," which Subparts are applicable?: JJJJ Stationary Spark Ignition Internal Combustion Engines 	YES □NO □N/A				
 Will all facilities under this PBR meet applicable requirements of 40 CFR Part 63, Hazardous Air Pollutants Maximum Achievable Control Technology (MACT) standards? If "Yes," which Subparts are applicable?: ZZZZ Stationary Reciprocating Internal Combustion Engines 	✓YES □NO □N/A				
 Will all facilities under this PBR meet applicable requirements of 40 CFR Part 61, National Emissions Standards for Hazardous Air Pollutants (NESHAPs)? If "Yes," which Subparts are applicable?: 	□yes □no ☑n/a				
If "Yes" to any of the above, please attach a discussion of how the facilities will meet any applicable standards.					
5. 30 TAC § 106.4(a)(7): PBR prohibition check					
Are there any air permits at the site containing conditions which prohibit or restrict the use of PBRs?	☐YES 🗹 NO				
If "Yes," PBRs may not be used or their use must meet the restrictions of the permit. A new permit or permit amendment may be required. List permit number(s):					
If "No," continue to Section 6.					

TCEQ - 10149 (Revised 11/05) 106.4 Checklist for Permits by Rule General Requirements This form for use by facilities subject to air quality permit requirements and may be revised periodically. (APDG 4999v6)

APIRT
JAN 28 2010
Page 2 of 3

Permit by Rule General Applicability Checklist 30 TAC § 106.4

6. 30 TAC § 106.4(a)(8): NO, Cap and Trade	
• Is the facility located in Harris, Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? If "Yes," answer the question below. If "No," continue to Section 7.	□YES ☑NO
 Will the proposed facility or group of facilities obtain required allowances for NO_x if they are subject to 30 TAC Chapter 101, Subchapter H, Division 3 (relating to the Mass Emissions Cap and Trade Program)? 	□YES □NO
7. Highly Reactive Volatile Organic Compounds (HRVOC) check	
 Is the facility located in Harris County? If "Yes," answer the next question. If "No," skip to the box below. Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," skip to the box below. Will one or more of the following HRVOC be emitted as a part of this project? 	☐YES ☑NO☐YES☐NO☐YES☐NO
If "Yes," complete the information below: 1,3-butadiene all isomers of butene (e.g., isobutene [2-methylpropene or isobutylene]) alpha-butylene (ethylethylene) beta-butylene (dimethylethylene, including both cis- and trans-isomers) ethylene propylene	
 Is the facility located in Brazoria, Chambers, Fort Bend, Galveston, Liberty, Montgomery, or Waller County? If "Yes," answer the next question. If "No," the checklist is complete. Will the project be constructed after June 1, 2006? If "Yes," answer the next question. If "No," the checklist is complete. Will one or more of the following HRVOC be emitted as a part of this project? 	□YES ☑NO □YES □NO □YES □NO
If "Yes," complete the information below: • ethylene • propylene b/hr tpy	

PRINT

TCEQ - 10149 (Revised 11/05) 106.4 Checklist for Permits by Rule General Requirements This form for use by facilities subject to air quality permit requirements and may be revised periodically. (APDG 4999v6)

APIRT
JAN 28 2010

4.0 REGULATORY REVIEW

4.1 Permit By Rule 30 TAC §106.4

The requirements for claiming this PBR are duplicated below in plain type. The ConocoPhillips documentation of compliance with these requirements is in **bold type**.

- (a) To qualify for a permit by rule, the following general requirements must be met.
 - (1) Total actual emissions authorized under permit by rule from the facility shall not exceed 250 tons per year (tpy) of carbon monoxide (CO) or nitrogen oxides (NO_x); or 25 tpy of volatile organic compounds (VOC) or sulfur dioxide (SO₂) or inhalable particulate matter (PM₁₀); or 25 tpy of any other air contaminant except carbon dioxide, water, nitrogen, methane, ethane, hydrogen, and oxygen.

The Sugarkane Facility meets the requirements of this part as shown in Table 3-1 of this application. Emission calculations are included in Appendix C.

(2) Any facility or group of facilities, which constitutes a new major stationary source, as defined in §116.12 of this title (relating to Nonattainment Review Definitions), or any modification which constitutes a major modification, as defined in §116.12 of this title, under the new source review requirements of the Federal Clean Air Act (FCAA), Part D (Nonattainment) as amended by the FCAA Amendments of 1990, and regulations promulgated thereunder, must meet the permitting requirements of Chapter 116, Subchapter B of this title (relating to New Source Review Permits) and cannot qualify for a permit by rule under this chapter. Persons claiming a permit by rule under this chapter should see the requirements of §116.150 of this title (relating to New Major Source or Major Modification in Ozone Nonattainment Areas) to ensure that any applicable netting requirements have been satisfied.

The Sugarkane Facility does not constitute a major source nor does it constitute a major modification.

(3) Any facility or group of facilities, which constitutes a new major stationary source, as defined in 40 Code of Federal Regulations (CFR) §52.21, or any change which constitutes a major modification, as defined in 40 CFR §52.21, under the new source review requirements of the FCAA, Part C (Prevention of Significant Deterioration) as amended by the FCAA Amendments of 1990, and regulations promulgated thereunder, must meet the permitting requirements of Chapter 116, Subchapter B of this title and cannot qualify for a permit by rule under this chapter.

The Sugarkane Facility does not constitute a major source nor does it constitute a major modification.

JAN 28 2010

(4) Unless at least one facility at an account has been subject to public notification and comment as required in Chapter 116, Subchapter B or Subchapter D of this title (relating to New Source Review Permits or Permit Renewals), total actual emissions from all facilities permitted by rule at an account shall not exceed 250 tpy of CO or NO_x; or 25 tpy of VOC or SO₂ or PM₁₀; or 25 tpy of any other air contaminant except carbon dioxide, water, nitrogen, methane, ethane, hydrogen, and oxygen.

The Sugarkane Facility meets the requirements of this part as shown in Table 3-1 of this application. The emission calculations are included in Appendix C.

(5) Construction or modification of a facility commenced on or after the effective date of a revision of this section or the effective date of a revision to a specific permit by rule in this chapter must meet the revised requirements to qualify for a permit by rule.

ConocoPhillips will comply with the requirements of this PBR as shown in this application.

(6) A facility shall comply with all applicable provisions of the FCAA, §111 (Federal New Source Performance Standards) and §112 (Hazardous Air Pollutants), and the new source review requirements of the FCAA, Part C and Part D and regulations promulgated thereunder.

The engine is subject to 40 CFR 60 Subpart JJJJ for Stationary Spark Ignition Internal Combustion Engines as well as 40 CFR 63 Subpart ZZZZ for Stationary Reciprocating Internal Combustion Engines. ConocoPhillips is in compliance with the applicable provisions of these regulations.

(7) There are no permits under the same commission account number that contain a condition or conditions precluding the use of a permit by rule under this chapter.

ConocoPhillips confirms that there are no permits under the same commission account number that contain condition(s) that would disqualify the use of PBR to authorize the installation and operation of the facility.

(8) The proposed facility or group of facilities shall obtain allowances for NO_x if they are subject to Chapter 101, Subchapter H, Division 3 of this title (relating to Mass Emissions Cap and Trade Program).

The Sugarkane Facility is not located in an area affected by the Mass Cap and Trade Program.

(b) No person shall circumvent by artificial limitations the requirements of §116.110 of

JAN 28 2010

this title (relating to Applicability).

The requirements of §116.110 of this title will not be circumvented by artificial limitations.

(c) The emissions from the facility shall comply with all rules and regulations of the commission and with the intent of the TCAA, including protection of health and property of the public, and all emissions control equipment shall be maintained in good condition and operated properly during operation of the facility.

ConocoPhillips will comply with this subpart as applicable.

(d) Facilities permitted by rule under this chapter are not exempted from any permits or registrations required by local air pollution control agencies. Any such requirements must be in accordance with TCAA, §382.113 and any other applicable law.

There are no local air pollution control agency requirements for Live Oak County; therefore, the Sugarkane Facility is not applicable to this requirement.

Source Note: The provisions of this §106.4 adopted to be effective November 15, 1996, 21 TexReg 10881; amended to be effective April 7, 1998, 23 TexReg 3502; amended to be effective September 4, 2000, 25 TexReg 8653; amended to be effective March 29, 2001, 26 TexReg 2396

APIRT
JAN 28 2010

Title 30 Texas Administrative Code § 106.352 Permit By Rule (PBR) Checklist Oil and Gas Production Facilities

The following checklist is designed to help you confirm that you meet Title 30 Texas Administrative Code § 106.352 (30 TAC § 106.352) requirements. If you do not meet all the requirements, you may alter the project design or operation in such a way that all the requirements of the PBR are met or you may obtain a construction permit. The PBR forms, tables, checklists and guidance documents are available from the Texas Commission on Environmental Quality (TCEQ), Air Permits Division Web site at www.tceq.state.tx.us/nav/permits/air_permits.html.

CHEC	KTHE MOST APPROPRIATE ANSWER	
	Check the type of facilities covered by this registration(check all that are applicable): ✓ oil or gas production facility	<i>y</i>
	The facilities at the site include (check all that apply): ✓one or more tanks ✓ separators ☐ dehydration units ☐ free water knockouts ☐ gunbarrels ☐ heater treaters ☐ natural gas liquids recovery units ☐ gas sweetening and other gas conditioning facilities ☐ sulfur recovery units	✓ YES □NO
	Will gas sweetening, sulfur recovery, or other gas conditioning facilities only condition gas that contains less than two (2) long tons per day of sulfur compounds as sulfur?	✓ YES □NO
1	Do all compressors and flares fully meet the requirements of 30 TAC § 106.512 and 30 TAC § 106.492, respectively? Attach data showing how the exemptions are met. Checklists are available.	✓ YES □NO
2	Are total emissions from all facilities, including fugitives and loading emissions, less than 25 tpy SO_2 , VOC , or 250 tpy of CO or NO_x ?	✓ YES □NO
	Have you attached calculations and other data, such as a gas analysis, showing that the emissions limits of the general rule are met?	✓ YES □NO
3	If the facility handles sour gas, is it located at least 1/4 mile from any recreational area, residence, or other structure not occupied or used solely by the owner or operator of the facility or the owner of the property upon which the facility is located? Attach a scaled map.	☐ YES ☐NO
4	Are total emissions of sulfur compounds, excluding sulfur oxides, less than 4.0 pounds per hour? Attach calculations.	✓ YES □NO
	Does the height of each vent emitting sulfur compounds meet or exceed the minimum vent height stated in 30 TAC § 106.352? List stack height: 30 ft	✓ YES □NO

PRINT

APIRT
JAN 28 2010

TCEQ - 10128 [Revised 10/04] Permt by Rule Checklist for Oil and Gas Production Facilities This form for use by facilities subject to air quality permit requirements and may be revised periodically. [APDG 5026v4]

Page 1

4.3 Permit By Rule 30 TAC §106.352

The requirements for claiming this PBR are duplicated below in plain type. The ConocoPhillips documentation of compliance with these requirements is in **bold type**.

Any oil or gas production facility, carbon dioxide separation facility, or oil or gas pipeline facility consisting of one or more tanks, separators, dehydration units, free water knockouts, gunbarrels, heater treaters, natural gas liquids recovery units, or gas sweetening and other gas conditioning facilities, including sulfur recovery units at facilities conditioning produced gas containing less than two long tons per day of sulfur compounds as sulfur are permitted by rule, provided that the following conditions of this section are met. This section applies only to those facilities named which handle gases and liquids associated with the production, conditioning, processing, and pipeline transfer of fluids found in geologic formations beneath the earth's surface.

(1) Compressors and flares shall meet the requirements of §106.512 and §106.492 of this title (relating to Stationary Engines and Turbines, and Flares).

The engines and flare at the Sugarkane Facility meet the requirements of §106.512 and §106.492 of this title (relating to Stationary Engines and Turbines and Flares) as shown in this application and the previous application submitted on March 5, 2009.

(2) Total emissions, including process fugitives, combustion unit stacks, separator, or other process vents, tank vents, and loading emissions from all such facilities constructed at a site under this section shall not exceed 25 tons per year (tpy) each of sulfur dioxide (SO2), all other sulfur compounds combined, or all volatile organic compounds (VOC) combined; and 250 tpy each of nitrogen oxide and carbon monoxide. Emissions of VOC and sulfur compounds other than SO2 must include gas lost by equilibrium flash as well as gas lost by conventional evaporation.

The Sugarkane Facility meets the requirements of this part as shown in Table 3-1 of this application. Emission calculations are provided in Appendix C.

(3) Any facility handling sour gas shall be located at least 1/4 mile from any recreational area or residence or other structure not occupied or used solely by the owner or operator of the facility or the owner of the property upon which the facility is located.

This rule is not applicable as the Sugarkane Facility does not handle sour gas.

(4) Total emissions of sulfur compounds, excluding sulfur oxides, from all vents shall not exceed 4.0 pounds per hour (lb/hr) and the height of each vent emitting sulfur compounds shall meet the requirements in Figure: 30 TAC 106.352(4),

APIRT
JAN 28 2010

except in no case shall the height be less than 20 feet.

The total emissions of sulfur compounds, excluding sulfur oxides, do not exceed 4.0 lb/hr as shown in Table 3-1 and Appendix C. The height of the flare associated with this application is 30 ft which is greater than the requirements in Figure: 30 TAC 106.352(4).

(5) Before operation begins, facilities handling sour gas shall be registered with the commission's Office of Permitting, Remediation, and Registration in Austin using Form PI-7 along with supporting documentation that all requirements of this section will be met. For facilities constructed under §106.353 of this title (relating to Temporary Oil and Gas Facilities), the registration is required before operation under this section can begin. If the facilities cannot meet this section, a permit under Chapter 116 of this title (relating to Control of Air Pollution by Permits for New Construction or Modification) is required prior to continuing operation of the facilities.

This rule is not applicable as the Sugarkane Facility does not handle sour gas.

Source Note: The provisions of this §106.352 adopted to be effective March 14, 1997, 22 TexReg 2439; amended to be effective September 4, 2000, 25 TexReg 8653

Exemption §106.492 Checklist (Previously Standard Exemption 80)

Smokeless Gas Flares

YOU MUST SUBMIT A PI-7 WITH REQUIRED ATTACHMENTS BEFORE CONSTRUCTION OR OPERATION IF THE GAS BURNED IN THE FLARE HAS A SULFUR OR CHLORINE CONCENTRATION GREATER THAN 24 PPMV.

The following checklist is designed to help you confirm that you meet Exemption §106.492, previously standard exemption 80, requirements. Any "no" answers indicate that the claim of exemption may not meet all requirements for the use of Exemption §106.492, previously standard exemption 80. If you do not meet all the requirements, you may alter the project design/operation in such a way that all the requirements of the exemption are met, or obtain a construction permit.

Y <u>ES</u>	<u>NO</u>	NA	<u>DESCRIPTION</u>
<u>✓</u>	_	_	Have you included a description of how this exemption claim meets the general rule for the use of
			exemptions (§106.4 checklist is available)?
<u>✓</u>	_	_	Is the flare equipped with a tip designed to provide good mixing with air, flame stability and a tip
			velocity less than 60 ft/scc for gases having a lower heating value less than 1,000 BTU/ft ³ , or less
			than 400 ft/sec for gases with a LHV greater than 1,000 BTU/ft ³ ? Attach a description including
_			BTU content and tip velocity (Table 8 is available).
₹	-	_	Is the flare equipped with a continuously burning pilot or other automatic ignition system that assures
			gas ignition whenever vents are directed to the flare? Attach a description of the system.
_	_	<u>✓</u>	If the flare emits more than 4 #/hr of reduced sulfur compounds, excluding sulfur oxides, is it
			equipped with an alarm system that immediately notifies appropriate personnel when the ignition
		,	system ceases functioning? Attach a description of the system.
_	_	<u>*</u>	If the flare emits less than 4 #/hr of reduced sulfur compounds and is not equipped with an alarm
			system, does the stack height meet the requirements of condition (d) of §106.352, previously standard
			exemption STDX 66? Required height: Actual height
_	_	✓	If the flare burns gases containing more than 24 ppmv of sulfur, chlorine or compounds containing
			either element, is it located at least 1/4 mile from any recreational area, residence, or other structure
			not occupied or used solely by the owner or operator of the flare or owner of the property where the
		,	flare is located? Attach a scaled map.
		₹	If the flare emits HCl, does the heat release (BTU/hr based on lower heating value) equal or exceed
,			2.73 x 10E5 x HCl emission rate(lb/hr)? Attach calculations.
<u>×</u>	_	_	If the flare emits SO2, does the heat release (BTU/hr based on lower heating value) equal or exceed
./			0.53 x 10E5 x SO2 emission rate (lb/hr)? Attach calculations.
<u>*</u>			Will you limit the flare to burning only combustible mixtures of gases containing only carbon,
./			hydrogen, nitrogen, oxygen, sulfur, chlorine, or compounds derived from these elements?
•	_	_	Will the gas mixture always have a net or lower heating value of at least 200 BTU/ft3 prior to addition of air?
1			
▼			Do you understand and will you ensure that liquids shall never be burned in the flare?

TCEQ 10145 [Revised 10/04] 106-492ckl - Permits by Rule Smokeless Gas Flare 106.492 Checklist This form is for use by sources subject to air quality permit requirements and may be revised periodically. [APDG 5000v3]

APIRT JAN 28 2010

Page 1

The heat release of F1MSS-VRU for SO₂ is greater than 49.10 Btu/hr as shown in Appendix C.

- (2) operational conditions.
- (A) The flare shall burn a combustible mixture of gases containing only carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine, or compounds derived from these elements. When the gas stream to be burned has a net or lower heating value of more than 200 Btu/ft³ prior to the addition of air, it may be considered combustible.

F1MSS-VRU burns a combustible mixture of gases containing only carbon, hydrogen, nitrogen, oxygen, sulfur, chlorine, or compounds derived from these elements. The lower heating value is 2,108 Btu/ft³.

(B) A flare which burns gases containing more than 24 ppmv of sulfur, chlorine, or compounds containing either element shall be registered with the commission's Office of Permitting, Remediation, and Registration in Austin using Form PI-7 prior to construction of a new flare or prior to the use of an existing flare for the new service.

F1MSS-VRU does not burn gasses containing more than 24 parts per million by volume of sulfur, chlorine, or compounds containing either element; therefore, this rule is not applicable.

(C) Under no circumstances shall liquids be burned in the flare.

F1MSS-VRU will not burn liquids.

Source Note: The provisions of this §106.492 adopted to be effective March 14, 1997, 22 TexReg 2439; amended to be effective September 4, 2000, 25 TexReg 8653

APIRT

January 2018 7010

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the question number. The PBR forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division Web site at: www.tceq.state.tx.us/permitting/air/nav/air pbr.html.

This PBR (§ 106.512) requires registration with the commission's Office of Permitting, Remediation, and Registration in Austin before construction if the horsepower (hp) of the facility is greater than 240 hp. Registration of the facility can be performed by completing a Form PI-7, "Registration for Permits by Rule," or Form PI-7-CERT, "Certification and Registration for Permits by Rule." This checklist should accompany the registration form.

Definitions:

The following words and terms, when used in this section, shall have the following meanings, unless the context clearly indicates otherwise.

- A. <u>Rich-burn Engine</u>: A rich-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content less than four percent by volume.
- B. <u>Lean-burn Engine</u>: A lean-burn engine is a gas-fired, spark-ignited engine that is operated with an exhaust oxygen content of four percent by volume, or greater.
- C. <u>Rated Engine Horsepower</u>: Engine rated horsepower shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed.
- D. <u>Turbine Horsepower</u>: Turbine rated horsepower shall be based on turbine base load, fuel power heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere pressure, and 60 percent relative humidity.

CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS									
Rule	Questions/Description	Information	Response						
	Will the engine or turbine be used as a replacement at an oil and gas site and does it meet all the requirements of the policy memo entitled, "Replacement of All Engine and Turbine Components for Oil and Gas Production?"	i septimini Prisipa	□YES ☑NO						
	If "YES," registration is not required for like-kind replacements of engine or turbine components. If "NO," please continue.								
(1)	Is the engine or turbine rated less than 240 hp?		☐YES ✓NO						
	If "YES," then registration is not required, but the facility must comply with conditions (5) and (6) of this rule. If "NO," then registration is required and the facility must be								
	registered by submitting a completed <u>Form PI-7</u> and <u>Table 29</u> or <u>Table 31</u> , as applicable, within 10 days after construction begins.	7 (1996) 1996 3.0 (1996) 1996							
(1)	Indicate the type of equipment (pick one):	✓Engine Turbine	☐YES ☐NO						
	If an engine, go to Question (2).								
	If a turbine, go to Question (3)								

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6)

APIRT JAN 28 2010

Page 1 of 6

	CHECK THE MOST APPROPRIATE ANSWERS	AND FILL IN THE BLANKS	
Rule	Questions/Description	Information	Response
(2)	Is the engine rated at 500 hp or greater? If "NO," the engine is between 240 hp and 500 hp. The engine must be registered by submitting a completed Form PI-7 and a Table 29 within 10 days after construction begins and must comply with conditions (5) and (6) of this rule.		✓YES □NO
	If "YES," in addition to registration, the engine must operate in compliance with the following nitrogen (NO_x) emission limit(s). Check the limit(s) applicable to this engine by answering the following:		
(2)(A)(i)	The engine is a gas-fired, rich-burn engine and will not exceed 2.0 grams per horsepower hour (g/hp-hr) under all operating conditions.	g/hp-hr NO _x	□YES ✓NO
(2)(A)(ii)	The engine is a spark-ignited, gas-fired, lean-burn engine or any compression-ignited, dual fuel-fired engine manufactured new after June 18, 1992, and will not exceed 2.0 g/hp-hr NO_x at manufacturer's rated full load and speed at all times; except, the engine will not exceed 5.0 g/hp-hr NO_x under reduced speed and 80% and 100% of full torque conditions.	<u>-</u>	✓YES □NO
(2)(A)(iii)	The engine is any spark-ignited, lean-burn two-cycle or four-cycle engine or any compression-ignited, dual fuel-fired engine rated 825 hp or greater and manufactured between September 23, 1982 and June 18, 1992, and will not exceed 5.0 g/hp-hr NO _x under all operating conditions.	g/hp-hr NO _x	□YES ☑NO
(2)(A)(iv)	The engine is any spark-ignited, gas-fired, lean-burn, four-cycle engine or compression-ignited, dual-fuel-fired engine that was manufactured before June 18, 1992, and is rated less than 825 hp, or was manufactured before September 23, 1982, and will not exceed 5.0 g/hp-hr NO_x at manufacturer's rated full load and speed at all times; except, the engine will not exceed 8.0 g/hp-hr NO_x under reduced speed and 80% and 100% of full torque conditions.		□YES √ NO
(2)(A)(v)	The engine is any spark-ignited, gas-fired, two-cycle, lean-burn engine that was manufactured before June 18, 1992, and is rated less than 825 hp, or was manufactured before September 23, 1982, and will not exceed 8.0 g/hp-hr NO _x under all operating conditions.		□YES ☑NO
(2)(A)(vi)	The engine is any compression-ignited, liquid-fired engine and will not exceed 11.0 g/hp-hr NO_x under all operating conditions.	g/hp-hr NO _x	☐YES ✓NO
(2)(B)	Does the engine require an automatic air-fuel ratio controller to meet the NO _x limit(s) above?		✓YES □NO
(2)(B)	For spark-ignited gas-fired or compression-ignited dual fuel-fired engines, is the engine required to have an automatic air-fuel ratio controller under condition (2)(B) of the PBR?		□YES □NO

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6)

CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS									
Rule	Questions/Description	Information	Response						
(2)(C)	Are you aware of and accept responsibility for the record and testing requirements as specified in (2)(C) of the PBR?		✓ YES NO						
(3)	Is the turbine rated 500 hp or more? If "NO," the turbine is between 240 hp and 500 hp. The engine only needs to be registered by submitting a completed Form PI-7 and a Table 31 within 10 days after construction begins. If "YES," in addition to registration, the turbine must operate		□YES [NO						
(3)(A)	in compliance with the following emission limit(s). Will the emissions of NO, exceed 2.0 g/m by for one fixing?								
(3)(B)	Will the emissions of NO_x exceed 3.0 g/hp-hr for gas-firing? Will the turbine meet all applicable NO_x and sulfur dioxide (or fuel sulfur) emission limitations, monitoring requirements, and reporting requirements of 40 CFR Part 60, NSPS Subpart GG?		YES NO						
(4)	Is the engine or turbine rated less than 500 hp or used for temporary replacement purposes? If "NO," go to Question (5). If "YES," the equipment does not have to meet the emission limits of (2) and (3). However, the temporary replacement equipment can only remain in service for a maximum of 90 days.		□YES ☑NO						
(5)	What type of fuel will be used and will the fuel meet the requirements of the PBR? Indicate the fuel(s) used.	Natural gas □Liquid petroleum gas ☑ Field gas □ Liquid fuel	✓ YES □NO						
(6)	Does the installation comply with the National Ambient Air Quality Standards (NAAQS)? Note: Indicate which method is used and attach the modeling report and/or calculations and diagrams to support the selected method.	✓ Modeling ☐ Stack height ☐ Facility emissions and property line distance	✓YES □NO						
(6)	Have you included a modeling report and/or calculations and diagrams to support the selected NAAQS compliance determination method?		✓YES □NO						
	For the following questions, please refer to the Electric Generators under Permit by Rule policy memo from October 2006.								
(7)	Is the engine or turbine used to generate electricity? If "NO," the following do not apply.		□YES 🗸 NO						

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6)

APIRT
JAN 28 2010

Page 3 of 6

	CHECK THE MOST APPROPRIATE ANSWERS AND FILL IN THE BLANKS									
Rule	Questions/Description	Information	Response							
(7)	Will the engine or turbine be used to generate electricity to operate facilities authorized by a New Source Review Permit?		☐ YES ☐ NO							
	If "YES," the engine or turbine does not qualify for this PBR and authorization must be obtained through a permit amendment.									
(7)	If the engine or turbine is used to generate electricity, will it be exclusively for on-site use at locations which cannot be connected to an electric grid?		□YES □NO							
	If "YES," describe why access to the electric grid is not available.									
(7)	If "NO," the engine or turbine does not qualify for this PBR. Has an Electric Generating Unit Standard Permit been issued for one of the following activities for which the engine or turbine will only be used to generate electricity?		☐YES ☐NO							
	Engines or turbines used to provide power for the operation of facilities registered under the Air Quality Standard Permit for Concrete Batch Plants.									
-	 Engines or turbines satisfying the conditions for facilities permitted by rule under 30 TAC 106, Subchapter E (relating to Aggregate and Pavement). Engines or turbines used exclusively to provide power to 									
	electric pumps used for irrigating crops. If "NO," the engine or turbine does not qualify for this PBR.									
Rule	Other Applicable Rules and Regulations	Why or Why Not?	Response							
	If the engine or turbine is located in the Houston/Galveston nonattainment area, is the site subject to the Mass Emission Cap and Trade Program?	N/A; Unit located in Live Oak County	□YES ✓ NO							
	Is the facility subject to 30 TAC Chapter 115?	N/A; Unit located in Live Oak County	□YES 🗸 NO							
	Is the facility subject to 30 TAC Chapter §§ 117.201-223?	N/A; Unit located in Live Oak County	□YES INO							

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6)

APIRT
JAN 28 2010
Page 4 of 6

Table 29 **RECIPROCATING ENGINES**

ENGINE	E DATA
APPLICATION APPLICATION Gas Compression Electric Generation Refrigeration Other (Specify) 4 Stroke Cycle 2 Stroke Cycle Fuel Injected Naturally Aspirated Turbocharged Intercooled (I.C.) Ignition/Injection Timing: Horsepower Speed (rpm) 1,400 APPLICATION Gas Compression Carburetted Feleringeration Other (Specify) Blower/Pump Scaven Intercooled (I.C.) Fixed	ged Turbocharged & I.C
FUEL ✓ Field Gas Landfill Gas Natural Gas Digester Gas Engine Fuel Consumption 7,510 BT Heat Value (specify units) 1081 Btu/scf Fuel Sulfur Content 1	LP Gas Other Dicsel
FULL LOAD EM No _x 2.0	CO 4.0 g/bhp-hr ppmv Total HC 3.04 g/bhp-hr ppmv ons versus engine speed and load. djustment SCR Catalyst
ADDITIONAL IN On separate sheets attach the following: A. A copy of engine manufacturer's site rating or general rating B. Tyical fuel analysis, including sulfur content and heating val C. Description of air/fuel ratio control system (manufacturers's in D. Details regarding principle of operation of emissions controls manufacturer's information. E. Exhaust parameter information on Table 1(a).	specification for the engine model. ue. For gaseous fuels, provide mole percent of constituents. information acceptable).

5.0 NAAQS ANALYSIS SUMMARY

Though compliance was shown for C-1 in the previous application dated March 5, 2009, total facility impacts must be shown to establish compliance with the National Ambient Air Quality Standards (NAAQS). As shown in Appendix F, the Sugarkane Facility meets the NAAQS.

The air quality impact analysis was conducted utilizing the EPA SCREEN3 model (EPA 1995). SCREEN3 was used to establish a conservative estimate of [maximum] short-term (1-hour) impacts from a single source. Consequently, 3-hour, 8-hour, 24-hour, and annual impacts were calculated using conversion factors listed in TCEQ RG-25 guidance. SCREEN3 is a single source Gaussian plume model that incorporates source-related factors and meteorological factors to estimate pollutant concentrations in the atmosphere from continuous sources. The model assumes that the pollutant undergoes no chemical reactions following release and that no other removal processes, such as wet or dry deposition, act on the plume during its transport from the source. The model maximizes a project's impact by investigating a full spectrum of wind speed and atmospheric stability classes and minimizes atmospheric mixing height. Inputs to this model include an emission rate, stack/release parameters, and associated building dimensions.

APIRT JAN 28 2010

CHECK THE MOST APPROPRIATE AN	SWERS AND FILL IN THE BLANKS	
	Why or Why Not?	Response
Is the facility subject to 40 CFR Part 60, NSPS Subpar	N/A; Not a steam generator	□YES [NO
Is the facility subject to 40 CFR Part 60, NSPS Subpar	N/A; Not electric utility steam gen.	□YES ☑NO
Is the facility subject to 40 CFR Part 60, NSPS Subpar	N/A; Not ICI steam gen. unit	□YES ☑NO
Is the facility subject to 40 CFR Part 60, NSPS Subpar	N/A; Not small ICI steam gen. unit	□YES ☑NO
Is the facility subject to 40 CFR Part 60, NSPS Subpar	1 GG? N/A; Unit not a turbine	□YES 🗸 NO
Is the facility subject to 40 CFR Part 63, MACT 5 YYYY?	N/A; Unit not a turbine	□YES ☑NO
Is the facility subject to 40 CFR Part 63, MACT 5	Meets requirements of 40 CFR 63 JJJJ, no further requirements apply under this subpart	☑YES □NO
Is the facility subject to 40 CFR Part 63, MACT 9 PPPPP?	N/A; Unit not a test cell/stand	□YES ☑NO

Record Keeping: In order to demonstrate compliance with the general and specific requirements of this PBR, sufficient records must be maintained to demonstrate that all requirements are met at all times. If the engine or turbine is rated greater than 500 horsepower, all records must be maintained as required by 30 TAC § 106.512(2)(C). The registrant should also become familiar with the additional record keeping requirements in 30 TAC § 106.8. The records must be made available immediately upon request to the commission or any air pollution control program having jurisdiction. If you have any questions about the type of records that should be maintained or testing requirements, contact the Air Program in the TCEO Regional Office for the region in which the site is located.

Recommended Calculation Method: In order to demonstrate compliance with this PBR, emission factors for each air contaminant from the EPA Compilation of Air Pollutant Emission Factors (AP-42), Fifth Edition, Volume 1, Section 3.1: Stationary Gas Turbines for Electricity Generation at: www.epa.gov/ttn/chief/ap42/index.html should be used, including, the specific air contaminant's emission limit listed on the table below.

TCEQ 10146 (Revised 05/07) PBR Checklist 106.512 - Stationary Engines and Turbines This form is used by sources subject to air quality permit standards and may be revised periodically. (APDG 5042 v6)

Page 5 of 6

JAN 28 2010

4.5 **Permit By Rule 30 TAC §106.512**

The requirements for claiming this PBR are duplicated below in plain type. The ConocoPhillips documentation of compliance with these requirements is in **bold type**.

Gas or liquid fuel-fired stationary internal combustion reciprocating engines or gas turbines that operate in compliance with the following conditions of this section are permitted by rule.

(1) The facility shall be registered by submitting the commission's Form PI-7, Table 29 for each proposed reciprocating engine, and Table 31 for each proposed gas turbine to the commission's Office of Permitting, Remediation, and Registration in Austin within ten days after construction begins. Engines and turbines rated less than 240 horsepower (hp) need not be registered, but must meet paragraphs (5) and (6) of this section, relating to fuel and protection of air quality. Engine hp rating shall be based on the engine manufacturer's maximum continuous load rating at the lesser of the engine or driven equipment's maximum published continuous speed. A rich-burn engine is a gas-fired spark-ignited engine that is operated with an exhaust oxygen content less than 4.0% by volume. A lean-burn engine is a gas-fired spark-ignited engine that is operated with an exhaust oxygen content of 4.0% by volume, or greater.

The Form PI-7CERT and Table 29 are included in Appendix A.

- (2) For any engine rated 500 hp or greater, subparagraphs (A) (C) of this paragraph shall apply.
 - (A) The emissions of nitrogen oxides (NO_x) shall not exceed the following limits:
 - 2.0 grams per horsepower-hour (g/hp-hr) under all operating conditions for any gas-fired rich-burn engine;

This provision is not applicable as the unit is a lean-burn engine as documented in the equipment-specific vendor data provided in Appendix E.

(ii) 2.0 g/hp-hr at manufacturer's rated full load and speed, and other operating conditions, except 5.0 g/hp-hr under reduced speed, 80-100% of full torque conditions, for any spark-ignited, gas-fired lean-burn engine, or any compression-ignited dual fuel-fired engine manufactured new after June 18. 1992:

As documented in the equipment-specific vendor data provided in Appendix E, the emissions from NOx will not exceed 2.0 g/hp-hr.

(iii) 5.0 g/hp-hr under all operating conditions for any spark-ignited, gas-fired, lean-burn two-cycle or four-cycle engine or any compression-ignited dual fuel-fired engine rated 825 hp or greater and manufactured after September

JAN 28 2010

Janay PURT

TRC Companies, Inc.

23, 1982, but prior to June 18, 1992;

The engine being added to the Sugarkane Facility was manufactured after June 18, 1992 and is less than 825 hp.

- (iv) 5.0 g/hp-hr at manufacturer's rated full load and speed and other operating conditions, except 8.0 g/hp-hr under reduced speed, 80-100% of full torque conditions for any spark-ignited, gas-fired, lean-burn four-cycle engine, or any compression-ignited dual fuel-fired engine that:
- (I) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or
- (II) was manufactured prior to September 23, 1982;

The engine being added to the Sugarkane Facility was manufactured after June 18, 1992; therefore, this rule is not applicable.

- (v) 8.0 g/hp-hr under all operating conditions for any spark-ignited, gas-fired, two-cycle lean-burn engine that:
 - (I) was manufactured prior to June 18, 1992, and is rated less than 825 hp; or
 - (II) was manufactured prior to September 23, 1982;

This provision is not applicable as the unit is not a spark-ignited, gas-fired, two-cycle lean-burn engine.

(vi) 11.0 g/hp-hr for any compression-ignited liquid-fired engine.

This provision is not applicable as the unit is not a compression-ignited liquid-fired engine.

(B) For such engines which are spark-ignited gas-fired or compression-ignited dual fuel-fired, the engine shall be equipped as necessary with an automatic air-fuel ratio (AFR) controller which maintains AFR in the range required to meet the emission limits of subparagraph (A) of this paragraph. An AFR controller shall be deemed necessary for any engine controlled with a non-selective catalytic reduction (NSCR) converter and for applications where the fuel heating value varies more than \pm 50 British thermal unit/standard cubic feet from the design lower heating value of the fuel. If an NSCR converter is used to reduce NO_x, the automatic controller shall operate on exhaust oxygen control.

The engine at the Sugarkane Facility is equipped with an automatic air-fuel ratio (AFR) controller operating on exhaust oxygen as shown in the equipment-specific vendor data provided in Appendix E.

(C) Records shall be created and maintained by the owner or operator for a period of at least two years, made available, upon request, to the commission and any local air pollution control agency having jurisdiction, and shall include the following:

APIRT

January 2010 28 2010

TRC Companies, Inc.

(i) documentation for each AFR controller, manufacturer's, or supplier's recommended maintenance that has been performed, including replacement of the oxygen sensor as necessary for oxygen sensor-based controllers. The oxygen sensor shall be replaced at least quarterly in the absence of a specific written recommendation;

ConocoPhillips will maintain documentation for each AFR controller showing that the manufacturer's or supplier's recommended maintenance has been performed. The oxygen sensor will be replaced at least quarterly in the absence of a specific written recommendation.

documentation on proper operation of the engine by recorded measurements of NO_x and carbon monoxide (CO) emissions as soon as practicable, but no later than seven days following each occurrence of engine maintenance which may reasonably be expected to increase emissions, changes of fuel quality in engines without oxygen sensor-based AFR controllers which may reasonably be expected to increase emissions, oxygen sensor replacement, or catalyst cleaning or catalyst replacement. Stain tube indicators specifically designed to measure NO_x and CO concentrations shall be acceptable for this documentation, provided a hot air probe or equivalent device is used to prevent error due to high stack temperature, and three sets of concentration measurements are made and averaged. Portable NO_x and CO analyzers shall also be acceptable for this documentation;

ConocoPhillips will maintain the required documentation of NO_x and CO emission measurements as soon as practicable, but no later than seven days following:

- 1) Each occurrence of engine maintenance which may reasonably be expected to increase emissions, and
- 2) Oxygen sensor replacement.

(iii) documentation within 60 days following initial engine start-up and biennially thereafter, for emissions of NO_x and CO, measured in accordance with United States Environmental Protection Agency (EPA) Reference Method 7E or 20 for NO x and Method 10 for CO. Exhaust flow rate may be determined from measured fuel flow rate and EPA Method 19. California Air Resources Board Method A-100 (adopted June 29. 1983) is an acceptable alternate to EPA test methods. Modifications to these methods will be subject to the prior approval of the Source and Mobile Monitoring Division of the commission. Emissions shall be measured and recorded in the as-found operating condition; however, compliance determinations shall not be established during start-up, shutdown, or under breakdown conditions. An owner or operator may submit to the appropriate regional office a report of a valid emissions test performed in Texas, on the same engine, conducted no more than 12 months prior to the most recent start of construction date, in lieu of performing an emissions test within 60 days following engine start-up at the new site. Any such engine shall be sampled no less frequently than biennially (or every 15,000 hours of elapsed run time, as recorded by an elapsed run time meter) and upon request of the executive director. Following the initial compliance test,

JAN 28 2010

in lieu of performing stack sampling on a biennial calendar basis, an owner or operator may elect to install and operate an elapsed operating time meter and shall test the engine within 15,000 hours of engine operation after the previous emission test. The owner or operator who elects to test on an operating hour schedule shall submit in writing, to the appropriate regional office, biennially after initial sampling, documentation of the actual recorded hours of engine operation since the previous emission test, and an estimate of the date of the next required sampling.

ConocoPhillips will comply with initial and biennial monitoring and reporting requirements, as instructed herein.

- (3) For any gas turbine rated 500 hp or more, subparagraphs (A) and (B) of this paragraph shall apply.
 - (A) The emissions of NO_x shall not exceed 3.0 g/hp-hr for gas-firing.
 - (B) The turbine shall meet all applicable NO_x and sulfur dioxide (SO₂) (or fuel sulfur) emissions limitations, monitoring requirements, and reporting requirements of EPA New Source Performance Standards Subpart GG--Standards of Performance for Stationary Gas Turbines. Turbine hp rating shall be based on turbine base load, fuel lower heating value, and International Standards Organization Standard Day Conditions of 59 degrees Fahrenheit, 1.0 atmosphere and 60% relative humidity.

This provision is not applicable as the units are not gas-fired turbines.

(4) Any engine or turbine rated less than 500 hp or used for temporary replacement purposes shall be exempt from the emission limitations of paragraphs (2) and (3) of this section. Temporary replacement engines or turbines shall be limited to a maximum of 90 days of operation after which they shall be removed or rendered physically inoperable.

This requirement is not applicable as the engine at the Sugarkane Facility is greater than 500 hp.

(5) Gas fuel shall be limited to: sweet natural gas or liquid petroleum gas, fuel gas containing no more than ten grains total sulfur per 100 dry standard cubic feet, or field gas. If field gas contains more than 1.5 grains hydrogen sulfide or 30 grains total sulfur compounds per 100 standard cubic feet (sour gas), the engine owner or operator shall maintain records, including at least quarterly measurements of fuel hydrogen sulfide and total sulfur content, which demonstrate that the annual SO₂ emissions from the facility do not exceed 25 tons per year (tpy). Liquid fuel shall be petroleum distillate oil that is not a blend containing waste oils or solvents and contains less than 0.3% by weight sulfur.

The engine will be fueled with field gas with a sulfur content of less than 30 grain of total sulfur per 100 standard cubic feet; however, the short-term and long-term emissions representations were based on 20 grains of sulfur per 100 scf and 5 grains of sulfur per 100 scf, for conservatism.

JAN 28 2010

- (6) There will be no violations of any National Ambient Air Quality Standard (NAAQS) in the area of the proposed facility. Compliance with this condition shall be demonstrated by one of the following three methods:
 - (A) ambient sampling or dispersion modeling accomplished pursuant to guidance obtained from the executive director. Unless otherwise documented by actual test data, the following nitrogen dioxide (NO 2)/NO_x ratios shall be used for modeling NO₂NAAQS;
 - (B) all existing and proposed engine and turbine exhausts are released to the atmosphere at a height at least twice the height of any surrounding obstructions to wind flow. Buildings, open-sided roofs, tanks, separators, heaters, covers, and any other type of structure are considered as obstructions to wind flow if the distance from the nearest point on the obstruction to the nearest exhaust stack is less than five times the lesser of the height, Hb, and the width, Wb, where:
 - (C) the total emissions of NO_x (nitrogen oxide plus NO₂) from all existing and proposed facilities on the property do not exceed the most restrictive of the following:
 - (i) 250 tpy;
 - (ii) the value (0.3125 D) tpy, where D equals the shortest distance in feet from any existing or proposed stack to the nearest property line.

Compliance with NAAQS for NO_x, SO₂, PM₁₀, and CO is demonstrated in Section 5 and Appendix F which contain the results of the analysis performed using the SCREEN3 model.

- (7) Upon issuance of a standard permit for electric generating units, registrations under this section for engines or turbines used to generate electricity will no longer be accepted, except for:
 - (A) engines or turbines used to provide power for the operation of facilities registered under the Air Quality Standard Permit for Concrete Batch Plants;
 - (B) engines or turbines satisfying the conditions for facilities permitted by rule under Subchapter E of this title (relating to Aggregate and Pavement); or
 - (C) engines or turbines used exclusively to provide power to electric pumps used for irrigating crops.

This provision is not applicable as the engine is not an electric-generating unit.

Source Note: The provisions of this §106.512 adopted to be effective March 14, 1997, 22 TexReg 2439; amended to be effective September 4, 2000, 25 TexReg 8653; amended to be effective June 13, 2001, 26 TexReg 4108

APIRT JAN 28 2010

TRC Companies, Inc.

APPENDIX D EMISSION CALCULATIONS (March 5, 2009)

APIRT
JAN 28 2010

TRC Companies, Inc.

Table 1 ConocoPhillips Company Emissions Summary Sugarkane Central Battery 1

Danielie (EDD)	Pl	√I ₁₀	v	OC	N	Ox	(:0	S	02	В	₂ S	H.	APs
Description (FIN)	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy	lb/hr	tpy
*Total Existing Facility Emissions	0.059	0.261	3.654	16.308	11.637	14.193	51.426	25,110	0.333	0.135	0.004	0.002	0.414	1.836
Condensate Tank 7 (T-7)	-	-	0.000	0.033	-	-	-	-	-	-	0,000	0.000	0.000	0.001
Condensate Tank 8 (T-8)		-	0.000	0.033	-	-	-	-	-	,	0.000	0.000	0.000	0.001
Condensate Tank 9 (T-9)	-	-	0.000	0.033	-	-	-	-	-	,	0.000	0.000	0.000	0.001
Condensate Tank 10 (T-10)		-	0.000	0.033	-	-	-	-	-	-	0.000	0.000	0.000	0.001
Compressor Emissions (C-2)	0.061	0.269	1.625	7.117	3.250	14.233	6.499	28.467	0.293	0.320	-		0.558	2.443
Additional Flare Emissions from C-2 (F1MSS-VRU)	0.012	0.017	-	-	0.101	0.001	0.865	0.005	0.001	0.000	-		-	-
Fugitive Emissions (FUG)	-	-	0.082	0.361	-	-	-	-	-	-	-	-	-	-
Total	0.132	0.546	5.363	23,918	14.988	28,427	58,791	53.582	0.626	0.455	0.004	0.002	0.972	4.282

APIRT
JAN 28 2010

TRC Companies, Inc.

Table 3 ConocoPhillips Company Flare Waste Combustion (F1MSS-VRU) Sugarkane Central Battery 1

Emissions from Diverting T-7, T-8, T-9, T-10 Standing Breating Losses to F1MSS-VRU during 5% VRU Downtime

¹ Total Emissions to Flare, m (lb/hr)	Heating Value of Fuel (Btu/scf)	Annual Operating Hrs. ⁵	² MW (lb/lbmol)	³Flow, V (scfm)	Flow, V (scfh)	Total Stream (MMBtu/hr)
69.40	2,180.00	438.00	40.73	10.94	656.69	1.43

Total Emissions after Combustion

Contaminant	4.6 Emission Factor (lb/MMBtu)	Emissions (lb/hr)	Emissions (tpy)	Emissions (lb/hr) (10% Safety Factor)	Emissions (tpy) (10% Safety Factor)
NOx	0.064	0.092	0.020	0.101	0.001
CO	0.550	0.787	0.172	0.865	0.005
SO ₂	0.001	0.001	0.000	0.001	0.000
PM10	0.007	0.011	0.015	0.012	0.017

¹Total Emissions to Flare includes Working and Breathing Losses from T-7, T-8, T-9 and T-10. As shown in Appendix D The uncontrolled Working and Breating losses each tank is 17.35 lb/hr VOC.

T = 528 R

 $R = 10.73 \text{ (psia*ft}^3)/(lbmol*R)$

P = 14.7 psia

APIRTJAN 28 2010

²Molecular Weight calculated by HYSYS.

³Ideal Gas Law: V = (mRT)/(60*MW*P)

⁴NOx and CO Emission Factors from "Air Permit Technical Guidance for Chemical Sources: Flares and Vapor Oxidizers (RG-109)

⁵Low-pressure gas will only be routed to F1MSS-VRU during VRU downtime or maintenance. Based on 5% VRUI downtime 438 hr/yr.

⁶SO2 and PM10 factor is taken from AP-42 1.4 Table 1.4-2

Fugitive Emission Calculations Sugarkane Central Battery 1 ConocoPhillips Company

					 -	
Component	Type of Service	Count	Uncontrolled Factor w/o C2 (1b/br/comnonent)	Control Efficiency %	Hourly Emissions (lb/hr)	Annual Emissions (tpy)
Valves	Vapor	15	0.00992	%0	0.03	0.11
	Light	10	0.0055	%0	0.02	0.07
	Heavy	0	0.0000185	%0	0.00	0.00
Pumps	Light Liquid	3	0.02866	%0	0.03	0.11
	Heavy	0	0.00113	%0	0.00	0.00
Flanges	Vapor	30	98000'0	%0	0.00	0.02
	Light Liquid	0	0.000243	%0	0.00	0.00
	Heavy	0	0.00000086	%0	0.00	0.00
Connectors	Vapor	0	0.00044	%0	0.00	0.00
Compressors	Vapor	1	0.0194	%0	0.00	0.01
Total VOC Emissions	ssions				0.07	0.33
10% Safety Factor	for				0.08	0.36
- Caraca / Car						

Water/Oil 0.296 Light Oil Heavy Oil 0.296 0.03 Weight Fraction VOC²
Gas Light Oi
0.171 0.296

¹ Emission factors are derived from TCEQ Guidance Document "Fugitive Emissions – Equipment Leak Fugitives", October 2000 (Oil and Gas Production Operations).

²EPA emissions factors for Gas & Light Oil, "Calculation Notebook for Oil and Gas Production Equipment Fugitive Emissions" API Publication No. 4638, April 1996, pg. 15

Sample Calculations

APIRT

JAN 28 2010

Hourly emissions (lb/hr) = Component count (#)*Emission factor (lb/hr)*Weight Fraction VOC Annual emissions (tpy) = Hourly emissions (lb/hr)*8.760 (hr/yr)/2000 (lb/ton)

TRC Companies, Inc.

Central Battery 1	Summary
Sugarkane	Emissions

Emissions Summary				Pote	ential Emiss	Potential Emissions - tons per year (tpy)	per year (tr	(Xo	
	FIN	EPN	XON	읭	VOC	PM ₁₀	80,	HS	HAPs
Compressor Engine	2	7-	14.67	22.00	2.27	0.29	0.12	1	1.38
Caterpillar G3508 TALE (4SLB) - Blowdown	2.2	F2MSS-BDWN	•	ı	3.82	ı	ı	2.7E-04	0.10
Storage Tanks								!	1
Condensate - Working & Standing losses	T-1,2,3,4,5,6	F1MSS-VRU	1		0.25	ı	•	1.4E-05	5.7E-03
Condensate - Flashing losses	T-1,2,3,4,5,6	F1MSS-VRU	1	•	5.05	t	•	3.6E-04	0.15
Produced Water - Working & Standing	T-WAT	F1MSS-VRU	•	•	2.8E-04	•	•	2.0E-08	8.0E-06
Produced Water - Flashing losses	T-WAT	F1MSS-VRU	•	•	ind. *		1	incl. *	inci.
Slop Tank - Working & Standing losses	T-SLOP	F1MSS-VRU	,	•	8.2E-03		•	5.8E-07	0.0013
Slop Tank - Flashing losses	T-SLOP	F1MSS-VRU	ı	1	ind. *	•	1	Incl. *	rcl. *
Flare Pilots									
Tank/Loading MSS Flare	F1MSS-VRU	F1MSS-VRU	7.9E-03	6.6E-03	4.3E-04	6.0E-04	3.3E-04	1 1	, ,
Compressor LP Gas MSS Flare	F2MSS-BDWN	FZMSS-BDWN	1.1E-0 Z	8.8E-03	5.8E-U4	8.0E-04	4.3E-U4	t	•
Flare Combustion Emissions									
Tank/Loading MSS Flare	T-1,2,3,4,5,6, T-WAT, T-SLOP LOAD	F1MSS-VRU	0.40	2.19	•	1	0.010	1.1E-04	•
Compressor LP Gas MSS Flare	C-1	F2MSS-BDWN	0.68	3.69	1	1	0.026	2.8E-04	•
Truck Loading	LOAD	F1MSS-VRU	•	•	0.36	1	•	2.6E-05	0.047
Fugitive Emissions	FUG	FUG		,	6.36	•		1.7E-03	0.36
Total Emissions (tpy) - (for Pi-7 CERT)			15.77	27.90	18.12	0.29	0.15	2.7E-03	2.04

Flace of the Condensate tank emissions for Produced Water and Slop tanks are included in the Condensate tank emissions and Slop tanks are included in the Condensate tank emissions and some statements of the Condensate tank emissions and some statements are included in the Condensate tank emissions and some statements are included in the Condensate tank emissions and some statements are included in the Condensate tank emissions are included in the Condensate tank emissions.

ConocoPhillips Company

_	
attery	
Central B	Summary
Sugarkane (Emissions 5

				Potent	Potential Emíssions - pounds per hour (lb/hr)	spunod - su	s per hour (lb/hr)	
	NII	EPN	XON	ଥ	NOC	PM ₁₀	<u>SO</u> 2	H ₂ S	HAPs
Compressor Engine Caterpillar G3508 TALE (4SLB) - Combustion Caterpillar G3508 TALE (4SLB) - Blowdown	2.2	C-1 F2MSS-BDWN	3.35	5.02	0.52 0.87	990'0	0.027	- 6.2E-05	0.31 0.023
Storage Tanks Condensate - Working & Standing losses Condensate - Flashing losses	T-1,2,3,4,5,6 T-1,2,3,4,5,6	F1MSS-VRU F1MSS-VRU	1 1	1 1	2.5E-03 1.15	i i	1 1	1.5E-07 7.0E-05	6.0E-05 0.029
Produced Water - Working & Standing Produced Water - Flashing losses	T-WAT T-WAT	F1MSS-VRU F1MSS-VRU			1.5E-07 Incl. *			1.1E-11 Incl. *	4.3E-09 Incl. *
Slop Tank - Working & Standing losses Slop Tank - Flashing losses	T-SLOP T-SLOP	F1MSS-VRU F1MSS-VRU			4.4E-05 Incl. *	1 1		3.1E-09 Incl. *	6.7E-06 Incl. *
Flare Pilots Tank/Loading MSS Flare Compressor LP Gas MSS Flare	F1MSS-VRU F2MSS-BDWN	F1MSS-VRU F2MSS-BDWN	1.5E-03 2.0E-03	1.3E-03 1.7E-03	8.3E-05 1.1E-04	1.1E-04 1.5E-04	6.2E-05 8.3E-05	1 1	
Flare Combustion Emissions Tank/Loading MSS Flare Compressor LP Gas MSS Flare	T-1,2,3,4,5,6, T-WAT, T-SLOP, LOAD C-1	F1MSS-VRU F2MSS-BDWN	1.84	10.00	, ,		0.048	5.1E-04 3.2E-03	1 1
Truck Loading	LOAD	F1MSS-VRU	•	•	0.070	•	•	5.0E-06	0.0091
Fugitive Emissions	FUG	FUG	'	1	1.45	1	:	3.8E-04	0.082
Total Emissions (tpy) - (for PI-7 CERT)			12.93	57.14	4.06	0.066	0.37	4.2E-03	0.46

FIN/EPN: C-1

Sugarkane Central Battery 1 Compressor Engine Emissions

			i					
			HAPs	1.15 1.38		HAPs	0.26	0.31
	SO ₂ ⁽³⁾ 0.016	ar	803	0.098	iour	802	0.022	0.027
actors (EF)	PM ⁽²⁾ 0.039	Air Emissions - Tons per Year	PM/PM ₁₀	0.24	Air Emissions - Pounds per hour	PM/PM ₁₀	0.055	990.0
Emission Factors (EF)	VOC (1)	Emissions	NOC	1.89	:missions -	Noc	0.43	0.52
	3.0	Air	03	18.34 22. 00	Air B	의	4.19	5.02
	NOx 2.0		XON	12.22 14.67		XON	2.79	3.35
,	Engine Description CAT G3508 TALE [4SLB]		•	Tons per year (tpy) tov - Including 20% safety factor		•	Pound per hour (lb/hr)	lb/hr - Including 20% safety factor
	Unit ID C-1		된	8760				
			위	633				
			it ID Engine Description	C-1 CAT G3508 TALE [4SLB]				
			حَا	Ċ				

Example calculations - NOx Emissions 2.0 g/hp-hr x 633 hp x 8760 hrs/yr x 1 lb/453.59 g x 1 ton/2000 lbs = 12.22 tpy 2.0 g/hp-hr x 633 hp x 1 lb/453.59 g = 2.79 lb/hr

(1) Manufacturer's Emissions Factors for NOx, CO, and VOC. NOx and CO adjusted with safety factor to 2.0 g/hp-hr and 3.0 g/hp-hr, respectively. Units of MMBtu are converted to g/hp-hr using fuel usage data from manufacturer.

APIRT
JAN 28 2010

ConocoPhillips Company

Sugarkane Central Battery 1 Hazardous Air Pollutant (HAP) Emissions from Engine

FIN/EPN: C-1

C-1 - CAT G3508 TALE [4SLB]

	Emission Factor (1)	
	lb/MMBtu	% of total VOC
VOC	1.18E-01	
1,3-Butadiene	2.67E-04	0.23
2,2,4-Trimethyllpentane	2.50E-04	0.21
Acetaldehyde	8.36E-03	7.08
Acrolein	5.14E-03	4.36
Benzene	4.40E-04	0.37
Ethylbenzene	3.97E-05	0.03
Formaldehyde	5.28E-02	44.75
Methanol	2.50E-03	2.12
n-Hexane	1.11E-03	0.94
Naphthalene	7.40E-05	0.06
Phenol	2.40E-05	0.02
Toluene	4.08E-04	0.35
Xylene	1.84E-04	<u>0.16</u>
•	7.16E-02	60.68

	<u>C</u> .	<u>-1</u>
	Cat G3508 T.	ALE (633 hp)
	lbs/hr	tpy
VOC	0.43	1.89
<u>HAPs</u>	<u>lbs/hr</u>	tpy
1,3-Butadiene	9.8E-04	4.3E-03
2,2,4-Trimethyllpentane	9.2E-04	4.0E-03
Acetaldehyde	3.1E-02	1.3E-01
Acrolein	1.9E-02	8.3E-02
Benzene	1.6E-03	7.1E-03
Ethylbenzene	1.5E-04	6.4E-04
Formaldehyde	1.9E-01	8.5E-01
Methanol	9.2E-03	4.0E-02
n-Hexane	4.1E-03	1.8E-02
Naphthalene	2.7E-04	1.2E-03
Phenol	8.8E-05	3.9E-04
Toluene	1.5E-03	6.6E-03

Example

Xylene

2.50E-03 lb methanol / MMBtu / 0.118 lb / MMBtu VOC x 1.89 tpy VOC = 0.040 tpy methanol 2.50E-03 lb methanol / MMBtu / 0.118 lb/MMBtu VOC x 0.43 lb/hr VOC = 0.0092 lb/hr methanol

3.0E-03

APIRTJAN 28 2010

(1) US EPA AP-42, Fifth Edition, Table 3.2-2 Uncontrolled Emission Factors for 4-stroke lean-burn engines

Liaise

3/5/2009 8:42 AM

Total

Sugarkane Central Battery 1 Compressor Engine Blowdown Emissions

lb/hr 4.74E+03

Compressor Dowtime 2% Flare Destruction Efficiency 98%

Speciated Emissions - VOC and HAPs	[voc]	[VOC] - Incl. 20% Safety Factor	6.2E-05 [H ₂ S] - Incl. 20% Safety Factor							[HAPS] - Ind. 20% Safety Factor
missions - \	lbs/hr 0.73	0.87	6.2E-05	9.1E-04	1.6E-03	ı	9.1E-04	1.9E-02	-	0.023
Speciated E	10V 3.18	3.82	2.7E-04	4.0E-03	7.0E-03	ı	4.0E-03	8.5E-02	•	0.10
Weight Fraction *	0.383	OO/ 100 HW	7.1E-05	1.0E-03	1.8E-03	1	1.0E-03	2.2E-02	- et	APS
	VOC		H ₂ S	Benzene	Toluene	Ethyl Benzene	Xylene	n-Hexane	2,2,4 Trimethypentane	Subtotal HAPS

_
=
≡
፱
≡
፱
₹
፱
Ę
₹
E
Ę
E
ScoPhill ScoPhill
locoPhill
ScoPhill ScoPhill
nocoPhill
locoPhill
onocoPhill
onocoPhill
nocoPhill

Convensate and water hands - Standing and working Losses Material References :	and vigning bosses References:	Condensate	Condensate	Condensate	Condensate	Condensate	Condensate	Slop	Water
Tank ID	Fixed roof vertical (cone-type) storage (anks	1	1-2	۲ <u>-</u> 3	7	T-5	1-6	T-SLOP	T-WAT
Atmospheric pressure (Pa, psia)	Avg. Atmospheric Pressure, EPA Tanks 4.0	14.33	14.33	14.33	14.33	14.33	14.33	14.33	14.33
Max Ambient Temp (Tax, F)	EPA AP-42 Table 7.1-7 or Tanks 4.0; San Antonio	79.51	79.51	79.51	79.51	79.51	79.51	79.51	79.51
Min Ambient Temp (Tan. F)	EPA AP-42 Table 7.1-7 or Tanks 4.0: San Antonio	57.73	57.73	57.73	57.73	57.73	57.73	57.73	57.73
Daily Average Amb. Temp (Taa. R)		528.29	528.29	528,29	528.29	528.29	528.29	528.29	528,29
Daily Ambient Tamp Range (dTa)	EPA AP-42, Fifth Edition, Chapter 7	21.78	21.78	21.78	21.78	21.78	21.78	21.78	21.78
Solar Paint Absorptance Factor (alpha, a)	AP-42 Table 7.1-6	0.68	0.68	0.68	990	990	89:0	0.68	0.68
Solar Insolation Factor (I. Stu/ft^2*dav)	AP-42 Table 7.1-7 or Tanks 4.0: San Antonio	1569	1569	1569	1569	1569	1569	1569	1569
Daily vapor temo range (dTv R)	Deffa Tv = 0.72 x Deffa Ta + 0.028 x alpha x I	45.56	95 54	45.56	45.56	45.56	45.56	45.56	45.56
Liauld Bulk Temp (Tb. R)	Tb = Taa + 6 x aloha - 1	531.37	531.37	531.37	531.37	531.37	531.37	531.37	531.37
Daily Avo Lio surf temp (Tla. R)	$T_{10} = (0.44 \times T_{20}) + (0.56 \times T_{0}) + (0.0079 \times alphe \times l)$	538.44	538.44	538.44	538.44	538.44	538.44	538.44	538.44
Dally Max Lig surf temp (Tlx. R)	Tix = Tia + (0.25 x Delta Tv)	549.83	549.83	549.83	549.83	549.83	549.83	549.83	549.83
Daily Min Liq surf temp (Tin, R)	$TIn = TIa - (0.25 \times Delta Tv)$	527.05	527.05	527.05	527.05	527.05	527.05	527.05	527.05
	Haafed or Insulated?								
ANNUAL EMISSION RATE									
Vapor Molecular Weight, (Mv)	HYSIS calculated vMW	40.7	40.7	40.7	40.7	40.7	40.7	32.8	40.7
Annual net throughput (Q, bbl/yr)	5000 bbifday cond; 100 bbifday water; 15 bbl/day slop	304167	304167	304187	304167	304187	304167	5475	18250
Tank Maxlmum Liquid Volume, (V⊾ft³)	$V_{LX} = (3.14/4) \times (D^{A}2) \times Hs$	2826.00	2826.00	2826.00	2826.00	2826.00	2828.00	1177.50	2826.00
Tumover per year (N)	$N = (5.614 \times Q) / V_{1x}$	604.24	604.24	604.24	604.24	604.24	604.24	26.10	36.25
Turnoverfactor(Kn)	AP-42 Fig. 7.1-18. Kn = (180 + N) / (6 x N) if N>36 pr 1	0.22	0.22	0.22	0.22	0.22	0.22	8	0.99
Working loss product factor (Kp)	AP-42 Page 7.1-18 (0.75 for crude oils / all other, 11	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Tank Shell Height (Hs. ft)		25.00	25.00	25.00	25.00	25.00	25.00	15.00	25.00
Liquid Height (HI, ft)		12.50	12.50	12.50	12.50	12.50	12.50	7.50	12.50
Diameter (ft)		12.00	12.00	12.00	12.00	12.00	12.00	10.00	12.00
Roof Outage (Hro, ft)	cone-1/3 x Hr & Hr =tank radius x .0625	0.13	0.13	0.13	0.13	0.13	0.13	0,10	0.13
Vapor Space Outage (Hvo, ft)	Hvo = Hs - HI + Hro	12.63	12.63	12.63	12.63	12.63	12.63	7.60	12.63
Vapor Space Volume (Vv. ff ⁿ 3)	$V_{V} = (3.14/4) \times (D^{2}) \times H_{VO}$	1427.85	1427.85	1427.85	1427.85	1427.85	1427.85	597.23	1427.85
Vapor Density (Wv, Ib/ft*3)	Wv = (Mv x Pva) / (R x Tla); (R = 10.731 (psia x ft·3) / (B-molex/R))	0.0969	0.0969	6960.0	0.0969	0.0969	0.0969	0.5735	0.0969
VP @daily maxing surftemp (Pvx, psia)	ConocoPhillips HYSIS program -vapor pressures	16.3571	16.3571	16.3571	16.3571	16.3571	16.3571	117.9955	16.3571
VP @daily min liq surf lemp (Pvn, psia)		11.4807	11.4807	11.4807	11.4807	11.4807	11.4807	86.2111	11.4807
Daily Vapor Pressure Range (dPv.psia)	Delta Pv = Pvx - Pvn	4.8764	4.8764	4.8764	4.8764	4.8764	4.8764	31.7843	4.8764
Breather Vent P Set Range, Delta Pa psi	Delta Pa = Pay - Pay [BV pressure setting - 8V vacuum setting]	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000	0.4000
VP (@ daily avg llq surf temp (Pva, psia)	HYSIS program calculated	13.7460	13.7460	13.7460	13.7460	13.7460	13.7460	101.1157	13.7460
Vapor Space Expansion Facter (Ke)	Ke = (Delta Tv / Tla) + (Delta Pv - Delta Pa) / (Pa - Pva), AP42	7.80	7.80	7.80	7.80	7.80	7.80	-0.28	7.80
Vented Vapor Saturation factor (Ks)	Ks = 1 / (1 + (0.053 x Pva x Hvo))	0.10	0.10	0 .10	0.10	0.10	0.10	0.02	0.10
Standing Storage Loss (Ls. Ib/yr)	Ls = 365 x Vv x Wv x Ke x Ks	38637.58	38637.58	38637.58	38637.58	38637.58	38637.58	00:0	38637.58
Working Loss (Lw, lb/yr)	Lw = 0.0010 x Mv x Pva x Q x Kn x Kp	27628.09	27628,09	27628.09	27628.09	27628.09	27628.09	13606.31	7618.43
Total Losses (Lt, lb/yr)	Li=Ls+Lw	66265.68	66265.68	66265.88	66265.68	66265.68	66265.68	13606.31	46256.01
Total Lossas (Lt", tpy)	U" = U1/2000	33.1328	33.1328	33.1328	33.1328	33.1328	33.1328	6.8032	23.1280
					5	5	Š	5	

VOC Annual Emission Rate - TPY Uncontrolled	33.13	33.13	33.13	33.13	33.13	33.13	6.80	0.23	205.83
Controlled with VRU - 95% C.E. [remeinder of stream to flare]	1.66	1.66	1.68	1.66	98.	1.66	0.34	1.2E-02	10.29
Controlled with Flare - 96% D.E.	0.033	0.033	0.033	0.033	0.033	0.033	0.0068	2.3E-04	0.21
Controlled with Flare - 98% D.E Including 20% safety factor	0.040	0.040	0.040	0.040	0.040	0,040	0.0082	2.8E-04	0.25
MAXIMUM HOURLY EMISSION RATE TCEQ Guidance Doc. RG-166. Draft February 2001	Condensate	Condensate	Condensate	Condensate	Condensate	Condensate	Slop	Water	
VP @hourly max (in surf temp (Phlx, psia)	18.36	18.36	16.36	16.36	16.36	16.38	118.00	18.36	
Maximum filling rate (FRm, galfhr)	1458.33	1458.33	1458.33	1458.33	1458.33	1458.33	26.25	52.5	
Wking loss @ Max. liq storage temp (Lw-max, Lw-max = 0.0010 x Mx x Pxx Q x 1 pq x Kp	151982.80	151982.80	151982.80	151982.80	151982.80	151982.80	15877.68	9118.97	
Max. VOC Hrly, Emission Rate (Lmax, Ibs/hr). Lmax = (Lw-max x FRm) / (N x V _{1 x} x (7 48 gal / fl ² 3))	17.35	17.35	17.35	17.35	17.35	17.35	1.81	6.2E-03	105.93
	0.017	0.017	0.017	0.017	0.017	0.017	0.002	6.2E-06	0.1
Controlled with Figure - 98% D.E.	3.5E-04	3.5E-04	3.55-04	3.5E-04	3.55-04	3.55-04	3.6E-05	1.2E-07	0.0021
Controlled with Flare - 98% D.E Including 20% safety factor	4.2E-04	4.2E-04	4.2E-04	4.2E-04	4.2E-04	4.2E-04	4.4E-05	1.6E-07	0.0025

APIRT
JAN 28 2010

Sugarkane Central Battery 1 Hazardous Air Pollutant (HAP) and H₂S Emisslons from Condensate & Produced Water Tanks

ø
1 Losse
Standing
and
Working

	Total	ξģ	1.5E-05	5.7E-03	3.4E-04 2.9E-04	5.0E-04	4.1E-06	2.0E-04	7.0E-03
, j		<u> </u>	1.5E-07	5.6E-05	1.8E-06 2.8E-06	4.7E-06	2.2E-08	1.8E-06	6.7E-05
() () () () () ()					。 人	>			
က် ချ စ	T-1, 2, 3, 4, 5, 6 Condensate	χaj	2.4E-06	8.3E-04	4.2E-05	6.5E-05	,	2.3E-05	9.6E-04
T-1, 2, 3, 4, 3 Condensa 3.3E-02 3.5E-04	T-1, 2, 3, 4, 5, Condensate	lb/hr	2.5E-08	8.7E-06	- 4.4E-07	6.8E-07	•	2.4E-07	1.0E-05
Water Water 2.8E-04 1.5E-07	T-WAT <u>Water</u>	極	2.0E-08	6.9E-06	3.5E-07	5.5E-07	•	1.9E-07	8.0E-06
7-W Wa 2.8E 1.5E	Y-T	lb/hr	1.1E-11	3.7E-09	- 1,9E-10	2.9E-10		1.1E-10	4.3E-09
F-SLOP Slop 3. 2E-03 4. 4E-05	<u>.</u> a	故	5.8E-07	7.1E-04	3.4E-04 3.6E-05	1.1E-04	4.1E-06	6.2E-05	1.3E-03
T-SLOP <u>Slop</u> 8.2E-03 4.4E-05	T-SLOP Slop	lb/hr	3.1E-09	3.8E-06	1.8E-06 1.9E-07	5.9E-07	2.2E-08	3.3E-07	6.7E-06
VOC - TPY VOC - Lb/hr	Wt Fraction (2)	Cond/Water	7.12E-05	2.50E-02	- 1.26E-03	1.97E-03	,	7.02E-04	
	Wt Fraction (1)	Slop	7.12E-05		4.19E-02 4.43E-03				
			H ₂ S	n-Hexane	2,2,4-Trimethylpentane Benzene	Toluene	Ethylbenzene	Xylene	TOTAL HAPs

HYSIS MODE	HYSIS MODEL - SUMMARY - FLASHING LOSSES	ASHING LOSSES		AC CIES A	PREDICTE	D FIRST YEAR	PREDICTED FIRST YEAR VOC EMISSIONS BASED ON STRADY MAYIMING CONDENSATE DATES AND VIELD	2				
			Sugarkane Cen	tral Battery 1. (7.	70 psig - 80 De	ag F and 5000 BCF	Sugarkane Central Battery 1. (770 psig - 80 Deg F and 6000 BCPD) Model assuming drop to atmospheric conditions	op to atmosphe	nic conditions			
				ITEMS IN Y	ITEMS IN YELLOW FROM HYSIM RUN	I HYSIM RUN					3/4/2009 16:58	16:58
	N2 Mo!%	CO2 Mol%	C1 Mol%	C2 Mol%	ABCPD	STBCPD	VENT SCFD	#/DAY	PRESSURE psia			
FLASH GAS	0.00%	0.00%	0.00%	0.00%	0.0	0.00	0	0	¥			
TANK VENT	0.00%	1.78%	13.15%	29.30%	¥	ď	377,035	43584	15			
	initial Condensate Production	Production				ű.	FIRST STAGE SEPARATOR PRESSURE	OR PRESSURE	64.70			
INPUT HERE	1 0009	5000 STBCPD STBCPD (Yes or	No.			•						
	the carrier of the property of	•					Tank VOCs					ESTIN
		Flash	Total FG HC	FG VOC	Tank Flash	Total Tank HC	from Flashing		Loading Loss*	Standing Loss*	Working Loss*	Total
Month	STBCPD	Gas SCFD	TONS/month	TONS/month	Gas SCFD	TONS/month	TONS/month		HC TP month	VOC TP month	VOC TP month	TONS
-	2009	0		000	377035	628	350.42		27.65	1.48	4.10	38 0
2	2000	0	0	000	377035	629	350.42		27.65	1.48	4.10	38
m	2000	0	0	0.00	377035	829	350.42		27.65	1.48	4.10	38.
4	2000	0	0	000	377035	629	350.42		27.65	1.48	4.10	8
s	2000	0	0	000	377035	629	350.42		27.65	1.48	4.10	8
9	2000	0	0	000	377035	628	350.42		27.65	2.	4.10	Ř
_	2000	0	0	0.00	377035	629	350.42		27.65	1.48	4.10	8
	2009	0	0	000	377035	629	350.42		27.65	1.48	4.10	8
6	2000	0	0	000	377035	629	350.42		27.65	1.48	1 . 10	* *
5	2000	0	0	0.00	377035	629	350.42		27.65	1,48	1 .0	86
=	2000	0	0	000	377035	629	350.42		27.65	1.48	4.10	38

	886	-	3	2/102	670	24.000		20.53	25.	2		
m	0009		000	377035	829	350.42		27.65	1.48	4.10	383.65	
4	0 0009	•	00.0	377035	629	350.42		27.65	1.48	4.10	383.65	
s	0 0009	•	000	377035	629	350.42		27.65	1.48	01.4	383.65	
9	0 0009	•	800	377035	628	350.42		27.65	1.48	4.10	383.65	
_	2000	0	000	377035	629	350.42		27.65	1.48	4.10	383.65	
80	0 0009	0	000	377035	629	350.42		27.65	1.48	4.10	383.65	
6	2000	•	0.0	377035	629	350.42		27.65	1.48	4.10	383.65	
5	0000	0	000	377035	629	350.42		27.65	1.48	4.10	383.65	
=	2000	0	000	377035	629	350.42		27.65	1.48	4.10	383.65	
12	0009	0	00'0	37.7035	629	350.42		27.65	1.48	4.10	383.85	
								331.80	F8.7-	er C		
RATE INFORMATION	NOL					STREAM PROPERTIES	TES					
Total Annual Condensate Throughout	ensate Throughout	1824000.00	STB of Conder	Sate		From Hysim					Flash Gas	T.
Average Annual Condensate Rate	ndensate Rate	2000.00	STBCPD			•				N2 WL %	0.00%	
Ì										CO2 Wt %	%00'0	
Total Annual Flash Gas Vented	Gas Vented	•	SCF				Condensate	Flash Gas	Tank Vent	HZO WL%	0.00%	
Average Annual Flash Gas Rate	sh Gas Rate	•	SCFD			Specific gravity	2	쿧	1.40	C1 WE%	0.00%	
Total Annual Hydroc	Total Annual Hydrocarbon Flash Gas Vented	•	ΤΡΥ			Molecular Weight	118.70	2	40.73	C2 Wt %	0.00%	
•						API Gravity	60.88	2	Ę	VOC WT %	100.00%	
Total Annual Tank Flash Gas Vented	Flash Gas Vented	137,542,287	SCF			RVP @100F psia	12.64	2	ē			
Average Annual Tank Flash Gas Rate	ink Flash Gas Rate	377036	SCFD			Dry Btw/cuft	2	0.00	2265.76			
Total Annual Hydros	Total Annual Hydrocarbon Tank Flash Gas Vented	7552.24	ΤΡΥ									

Moderation from the management of the management		1.40 40,73 na na 2265.76
A 10.37	×	Ke 10.36
B 4176.17		N 4527.06
Pya 14.29	¥	Kn 0.17
Pv 4.34	Loading Mw 49.45	w 49.45
146. 0.40		

TPY TPY ΤPY

0.00

PREDICTED VOC INFORMATION
ANNUAL TOTAL FLASH GAS VOC
ANNUAL TANK VENT GAS VOC

ESTIMATED TOTAL UNCONTROLLED STATION VOC

0.00% 1.92% 0.04% 5.18% 21.64%

383.65 383.65 383.65 383.65 383.65 383.65 383.65 383.65 383.65

Post-flare - Incl. 20% Safety Factor

C.E. - VRU C.E - Flare

	_	_
-	-	
	-1	
	•	
	ı	
	- 5	
	è	
	٠	
	ان.	

ConocoPhillips Company

Sugarkane Central Battery 1

lazardous Air Foilu	Jtant (HAP) and H ₂ S i	nazardous Air Foilmeair (nAF) and n20 Enilssions from Condensate & Froduced Water Lanks	. Produced Water lanks	
Flashing Losses				
		T-SLOP, T-WAT (2)	T-1, 2, 3, 4, 5, 6	
	VOC - TPY	Slop/Water Incl.	Condensate 0.84	
	VOC - lb/hr	lucl.	0.16	
		T-MIX, T-WAT (2)	T-1, 2, 3, 4, 5, 6	
	\$	Mixed/Water	Condensate	
	Wt Fraction (1)	lb/hr tpx	lb/hr tpy	

Total	IP/PI	7.0E-05 3.6E-04		- د الر	/ ~ 1.2E-03	1.9E-03	•	6.9E-04	0.029 0.15
3, 4, 5, 5 ensate	τ ρ χ	1.2E-05 6.0E-05	2.1E-02	•	1.1E-03	1.7E-03	•	5.9E-04	0.024
Cond	<u>lb/hr</u>	1.2E-05	4.1E-03	•	2.1E-04	3.2E-04	•	1.2E-04	0.0048
Mixed/Water	极	Incl.	Incl.	nol.	<u>15</u>	no!	nol.	<u>luci</u>	Incl.
Mixed	lb/hr	Incl.	lncl.	<u> -</u>	no!	loc!	<u>1</u> 2	<u> S</u>	Incl.
	Wt Fraction (1)	7.12E-05	2.50E-02		1.26E-03	1.97E-03	•	7.02E-04	
		H ₂ S	n-Hexane	2,2,4-I rimethylpentane	Benzene	Toluene	Ethylbenzene	Xylene	TOTAL HAPS

(1) Tank HAP constituent weight fractions from "HC Tank Vapors" HYSYS report.
(2) Slop tank and Water tank flashing emissions are included in the condensate tank flashing emission totals.

3/5/2009 8:47 AM

JAN 28 2010

FIN/ EPN: F1MSS-VRU

Sugarkane Central Battery 1 Combustion Emissions from Diverting Tank Emissions to flare during VRU downtime

		Tank & Loading Emissions	g Emissions			
		toy	lb/hr	MW	<u>scfm</u>	
Flashing Losses Working & Standing		4205.09	960.07 105.93			
	Totai	<u>303.66</u> 4714.57	<u>58.72</u> 1124.72	40.73	178.10	
schr 10686 ×		Btu/scf 2108	II	22,529,797.4	22,529,797.4 Total Stream Btu/hr	

mRT/60*mw*P=V (1) Using PV=nRT

[m=lb/hr;P=14.696 psia; R=10.73;T=530 °R]

* 10.73*530/(60*MW*14.696) -Calculated 1124.72 178.10 V, scfm = V, scfm =

hrs/yr (5% of 8760 hours to account for 5% VRU downtime) H₂S Wt. Frac VOC 7.1E-05 438

100 0.40 2.19 0.010 1.1E-04 Incl. 20% Safety Factor Emissions 1.84 1.84 10.00 0.048 5.1E-04 tex 0.34 1.83 0.0087 9.2E-05 Emissions (2) 1.53 8.34 0.040 4.2E-04 NOX CO SO₂ H₂S

ample Calculations

80 0 X

0.068 lb/MMBtu x 22.529797 MM Btu/hr = 1.53 lb/hr
0.37 lb/MMBtu x 22.529797 MM Btu/hr = 8.30 lb/hr
10686 cf/hr x 0.0022 mol% H2S x 1 lb-mole/379 cf x 1 lb-mole SO2/lb-mole H2S x 64 lb SO2/lb-mole SO2 = 0.040 lb/hr
10686 cf/hr x 0.0022 mol% H2S x 1 lb-mole/379 cf x 34 lb/lb-mole x (1 - 0.98 D.E.) = 4.2E-04 lb/hr

JAN 28 2010

NOX & CO Emissions Factors from EPA AP-42 Emission Factors for Flare Combustion, Fifth Edition, Table 13:5-1, 9/91 (reformatted 1/95)

3/5/2009 8:49 AM

FIN/ EPN: F2MSS-BDWN

Sugarkane Central Battery 1 Combustion Emissions from Diverting Low Pressure Gas to Flare During Compressor Downtime

	Low Pressure	cas otream	,	,
	MMscf/day Ib/hr	lb/hr	≥	scfm
Gas Flow to Flare	1.57	4738	27.44	1113.50
<u>scf/hr</u> 66810 ×	<u>Btu/scf</u> 1420 ==		844,408.1	94,844,408.1 Total Stream Btu/hr

[m=lb/hr;P=14.696 psia; R=10.73;T=530 °R] mRT/60*mw*P=V (1) Using PV=nRT

* 10.73*530/(60*MW*14.696) -Calculated 4737.50 1113.50 V, scfm = V, scfm =

H₂S Wt. Fraction VOC 7.1E-05 hr/yr (2% of 8760 hours to account for 2% compressor downtime)

175

10V 0.68 3.69 0.026 2.8E-04 Incl. 20% Safety Factor Emissions 3.2E-03 42.11 15/hr 7.74 tpx 0.56 3.07 0.022 2.3E-04 3 Emissions 2.6E-03 1b/hr 6.45 35.09 0.25 NOx CO SO₂ H₂S

802 F3S

JAN 28 2010

Example Calculations

SO₂ 66810 of/hr x 0.0022 mol% H2S x 1 lb-mole/379 or x car location with the solution of the contraction o 0.068 lb/NMBtu x 94.844408 NM Btu/hr = 6.45 lb/hr
0.37 lb/NMBtu x 94.844408 MM Btu/hr = 35.09 lb/hr
66810 cf/hr x 0.0022 mol% H2S x 1 lb-mole/379 cf x 1 lb-mole SO2/lb-mole H2S x 64 lb SO2/lb-mole SO2 = 0.25 lb/hr

3/4/2009 4:59 PM

FIN/EPN: F1MSS-VRU, F2MSS-BDWN

Sugarkane Central Battery 1 Flare Pilot Emissions

		MMBtu/hr Heat Input (calculated)	Operating Hours	Btu/cf - Gas fuel heating value (LHV)	MMscflyr - calculated gas fuel usage (conservative, based on low heating v	scfhr
Parameters	F2MSS-BDWN	0.016 0.022	8760	1081	0.175	20.0
Paran	F1MSS-VRU	0.016	8760	1081	0.131	15.0

value)

	<u>PM/PM.a</u> 7.6
د ا)*	SO ₂ 0.6S 4.13
Factors (lb/MMsc	<u>VOC</u> 5.5
Emission F	CO 84.0
	NOX 100.0

	_				
py)	<u>80</u> 2	2.7E-04 3.6E-04	6.3E-04	7.6E-04	
Tons per year (tpy)	X	3.6E-04 4.8E-04	8.4E-04	1.0E-03	
ToT	3	0.0055	1.3E-02	1.5E-02	
	XON	0.0066	1.5E-02	1.8E-02	
	1				
	PM/PM.	1.1E-04 1.5E-04	2.7E-04	3.2E-04	
-	503	6.2E-05 8.3E-05	1.4E-04	1.7E-04	
	Vounds per niour (lossing)	8.3E-05 1.1E-04	1.9E-04	2.3E-04	
í	CO	1.3E-03 1.7E-03	2.9E-03	3.5E-03	
	NOX	1.5E-03 2.0E-03	3.5E-03	4.2E-03	
	EPN	F1MSS-VRU F2MSS-BDWN	TOTAL	TOTAL	(Incl. 20% Safety Factor)

PM/PM₁₀

5.0E-04 6.7E-04

1.2E-03 1.4E-03

Example Calculation

IO Ib NOx /MMscf x 0.019 MMBtu/hr x 1 cf / 1260 Btu = 0.0015 lb/hr NOx

Emission Factors from AP-42 Fifth Edition, Table 1.4-1, 1.4-2, 2/98; 7/98. SO2 factor adjusted using ratio of actual gas suffur content to 2000 gr/MMscf JAN 28 2010

3/4/2009 5:00 PM

4.2 Permit By Rule 30 TAC §106.8

The requirements for claiming this PBR are duplicated below in plain type. The ConocoPhillips documentation of compliance with these requirements is in **bold type**.

(a) Owners or operators of facilities and sources that are de minimis as designated in §116.119 of this title (relating to De Minimis Facilities or Sources) are not subject to this section.

The subject sources are not classified as a De Minimus Source and are, therefore subject to the requirements of this section.

(b) Owners or operators of facilities operating under a permit by rule (PBR) in Subchapter C of this chapter (relating to Domestic and Comfort Heating and Cooling) or under those PBRs that only name the type of facility and impose no other conditions in the PBR itself do not need to comply with specific recordkeeping requirements of subsection (c) of this section. A list of these PBRs will be available through the commission's Austin central office, regional offices, and the commission's website. Upon request from the commission or any air pollution control program having jurisdiction, claimants must provide information that would demonstrate compliance with §106.4 of this title (relating to Requirements for Permitting by Rule), or the general requirements, if any, in effect at the time of the claim, and the PBR under which the facility is authorized.

ConocoPhillips will comply with the recordkeeping requirements as stated in subsection (c) of this section.

- (c) Owners or operators of all other facilities authorized to be constructed and operate under a PBR must retain records as follows:
 - (1) maintain a copy of each PBR and the applicable general conditions of §106.4 of this title or the general requirements, if any, in effect at the time of the claim under which the facility is operating. The PBR and general requirements claimed should be the version in effect at the time of construction or installation or changes to an existing facility, whichever is most recent. The PBR holder may elect to comply with a more recent version of the applicable PBR and general requirements;

ConocoPhillips will maintain a copy of each PBR and the applicable general conditions of §106.4 of this title at its field office in Fulshear, TX.

- (2) maintain records containing sufficient information to demonstrate compliance with the following:
 - (A) all applicable general requirements of §106.4 of this title or the general requirements, if any, in effect at the time of the claim; and

JAN 28 2010

(B) All applicable PBR conditions;

ConocoPhillips will maintain records containing sufficient information to demonstrate compliance with applicable PBR conditions.

(3) Keep all required records at the facility site. If however, the facility normally operates unattended, records must be maintained at an office within Texas having day-to-day operational control of the plant site;

The Sugarkane Facility is operated unattended; therefore, ConocoPhillips will maintain records at the field office located in Fulshear, Texas.

(4) Make the records available in a reviewable format at the request of personnel from the commission or any air pollution control program having jurisdiction;

ConocoPhillips will make records available to the commission or any air pollution control program having jurisdiction.

(5) Beginning April 1, 2002, keep records to support a compliance demonstration for any consecutive 12-month period. Unless specifically required by a PBR, records regarding the quantity of air contaminants emitted by a facility to demonstrate compliance with §106.4 of this title prior to April 1, 2002 are not required under this section; and

ConocoPhillips will maintain records to support a compliance demonstration for any consecutive 12-month period. See §106.4 documentation.

(6) For facilities located at sites designated as major in accordance with §122.10(13) of this title (relating to General Definitions) or subject to or potentially subject to any applicable federal requirement, retain all records demonstrating compliance for at least five years. For facilities located at all other sites, all records demonstrating compliance must be retained for at least two years. These record retention requirements supersede any retention conditions of an individual PBR.

Records will be maintained for at least two years as the Sugarkane Facility is not designated as major in accordance with §122.10(13).

Source Note: The provisions of this §106.8 adopted to be effective November 1, 2001, 26 TexReg 8518

APIRT
JAN 28 2010

TRC Companies, Inc.

January 2010

G3508 LE Gas Petroleum Engine

500 bkW (670 bhp) 1400 rpm

Shown with Optional Equipment

CAT® ENGINE SPECIFICATIONS

V-8, 4-Stroke-Natural Gas
Bore 170 mm (6.7 in)
Stroke 190 mm (7.5 in)
Displacement
Compression Ratio8:1
Aspiration Turbocharged-Aftercooled
Combustion Low Emission
Rotation (from flywheel end) Counterclockwise
Flywheel & Flywheel HousingSAE No. 00
Flywheel Teeth
Shipping Weight (Dry) 5432 kg (11,950 lb)
Power Density
Power per Displacement 19.45 bhp/L
Capacity for Liquids
Cooling System¹
Lube Oil System (refill) 231 L (61 U.S. gal)
Oil Change Interval ²
Governor, Ignition, Protection ADEM™ A3
Air/Fuel Ratio Control ADEM™ A3
'Engine only.
² Can be extended through S•O•S ^{5M} program

STANDARD EQUIPMENT

Air Inlet System

Remote air inlet adapters

Charging System

Battery chargers

Cooling System

Jacket water thermostats and housing — full open temperature 98°C (208°F)

Jacket water pump — gear driven, centrifugal, non-self-priming

Aftercooler water pump — gear driven, centrifugal, non-self-priming

Aftercooler core for sea-air atmosphere

Aftercooler thermostats and housing — full open temperature 35°C (95°F)

Aftercooler - raw water, cleanable

Exhaust System

Exhaust manifolds — watercooled

Flywheels & Flywheel Housings

SAE No. 00 flywheel

SAE No. 00 flywheel housing

SAE standard rotation

Fuel System

Gas pressure regulator Natural gas carburetor Fuel gas shut-off valve (24V DC)

Instrumentation

Advisor panel

Advisor interconnect harness

Lubrication System

Crankcase breathers — top mounted

Oil cooler

Oil filter — RH

Oil pan — shallow

Oil sampling valve

Turbo oil accumulator

Mounting System

Rails, engine mounting

Power Take-Offs

Front housing — two-sided Front lower LH accessory drive

Protection System

Electronic shutoff system Gas shutoff valve

General

Paint — Caterpillar yellow Vibration damper and guard

LEHW8143-02 Page 1 of 4

G3508 LE GAS PETROLEUM ENGINE

500 bkW (670 bhp)

OPTIONAL EQUIPMENT

Air Inlet System

Remote air inlet adapters

Charging System

Battery chargers

Cooling System

Aftercooler core Thermostatic valves

Connections

Expansion and overflow tank

Water level switch gauge

European Certifications

European Union certifications

Exhaust System

Flexible fittings

Elbows

Flanges

Flange and exhaust expanders

Mufflers

Fuel System

Fuel filter

Instrumentation

Customer communication modules

Lubrication System

Oil filters — duplex

Oil pan drain

Oil level regulator

Sump pumps

Lubricating oil

Mounting System

Rails

Vibration isolators

Power Take-Offs

Auxiliary drive shaft Auxiliary drive pulleys

Front stub shaft

Pulleys

Protection System

Gas valve

Explosion relief valves

Starting System

Air pressure regulator

Air silencer

JW heaters

Battery sets (24-volt dry)

Battery accessories

General

Flywheel guard removal Engine barring group

Premium 8:1 pistons

G3508 LE GAS PETROLEUM ENGINE

500 bkW (670 bhp)

TECHNICAL DATA

		DM8621-01
Engine Power		Harman Andrews (1997) San San San San San San San San San San
@ 100% Load	bkW (bhp)	500 (670)
@ 75% Load	bkW (bhp)	375 (502)
Engine Speed	rpm	1400 is financial production of the second s
Compression Ratio		8:1
Emissions*		. And the property of the control of
NO _x	g/bkW-hr (g/bhp-hr)	2.01 (1.50)
CO at the same of	g/bkW-hr (g/bhp-hr)	2.47 (1.84)
Total Hydrocarbons	g/bkW-hr (g/bhp-hr)	4.08 (3.04)
Fuel Consumption**		・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
@ 100% Load	MJ/bkW-hr (Btu/bhp-hr)	10.63 (7510)
@ 75% Load	MJ/bkW-hr (Btu/bhp-hr)	11.22 (7936)
Heat Balance		
Heat Rejection to Jacket Water		100 30000000000000000000000000000000000
@ 100% Load	bkW (Btu/min)	319.8 (18,204)
@ 75% Load	bkW (Btu/min)	282 (16,013)
Heat Rejection to Aftercooler	,	HALL THE STATE OF
@ 100% Load	bkW (Btu/min)	80 (4555)
@ 75% Load	bkW (Btu/min)	56.1 (3191)
Heat Rejection to Exhaust		
@ 100% Load	https://paris	404.0 (07.400)
(LHV to 77° F / 25° C)	bkW (Btu/mn)	481.9 (27,408)
@ 75% Load (LHV to 77°)	Int AAT (Day loos)	070 (04 004)
(LHV to 77° F / 25° C)	bkW (Btu/mn)	373 (21,204)
Exhaust System		
Exhaust Gas Flow Rate		
(@ stack temp.,14.5 psig)		
@ 100% Load	m³/min (cfm)	115.76 (4088)
@ 75% Load	m³/min (cfm)	89.57 (3163)
Exhaust Stack Temperature		の表現では、1995年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の
@ 100% Load	°C (°F)	529 (985)
@ 75% Load	°C (°F)	525 (977)
Intake System		
Air Inlet Flow Rate		
@ 100% Load	m³/min (scfm)	39.53 (1396)
@ 75% Load	m³/min (scfm)	30.72 (1085)
Gas Pressure	kPag (psig)	242-276 (35-40)

^{*}at 100% load and speed

APIRT

JAN 28 2010

Page 3 of 4

^{**}ISO 3046/1

G3508 LE GAS PETROLEUM ENGINE

500 bkW (670 bhp)

DIMENSIONS

	DIMENSIONS	,
Length	mm (in)	2440.0 (96.06)
Width	mm (in)	1768.4 (69.62)
Height	mm (in)	1921.2 (75.64)
Shipping Weight	kg (lb)	5432 (11,950)

Note: General configuration not to be used for installation. See general dimension drawings for detail (drawing #315-3136).

Dimensions are in mm (inches).

RATING DEFINITIONS AND CONDITIONS

Engine performance is obtained in accordance with SAE J1995, ISO3046/1, BS5514/1, and DIN6271/1 standards.

Transient response data is acquired from an engine/generator combination at normal operating temperature and in accordance with ISO3046/1 standard ambient conditions. Also in accordance with SAE J1995, BS5514/1, and DIN6271/1 standard reference conditions.

Conditions: Power for gas engines is based on fuel having an LHV of 33.74 kJ/L (905 Btu/cu ft) at 101 kPa (29.91 in. Hg) and 15° C (59° F). Fuel rate is based on a cubic meter at 100 kPa (29.61 in. Hg) and 15.6° C (60.1° F). Air flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and 25° C (77° F). Exhaust flow is based on a cubic foot at 100 kPa (29.61 in. Hg) and stack temperature.

Materials and specifications are subject to change without notice. The International System of Units (SI) is used in this publication. CAT, CATERPILLAR, their respective logos, ADEM, S•O•S, "Caterpillar Yellow," the "Power Edge" trade dress as well as corporate and product identity used herein, are trademarks of Caterpillar and may not be used without permission.

Performance Numbers: DM8621-01 LEHW8143-02 (7-09) ©2009 Caterpillar All rights reserved.

APPENDIX E ENGINE SPECIFICATIONS

APIRT

JAN 28 2010

TRC Companies, Inc.

<u>иарі 2010 —</u>

Texas Commission on Environmental Quality Air Quality Permit by Rule Registration

ConocoPhillips Company Sugarkane Central Battery 1

Live Oak County, Texas

RECEIVED JAN 28 2010

AIR PERMITS DIVISION

Prepared for: ConocoPhillips Company P.O. Box 2197 3WL-15060 Houston, TX 77252

Prepared by

10011 Meadowglen Lane, Suite 100 Houston, TX 77042 Telephone: 713-244-1050 Fax: 713-244-1098

January 2010

TABLE OF CONTENTS

1.0	INTRODUCTION1-1	
1.1 1.2	Purpose	
2.0	PROCESS DESCRIPTION2-2	
3.0	EMISSION SUMMARY3-1	
3.1	Site-Wide Emissions	3-1
3.2	Tank Emissions	3-2
3.3	Compressor Emissions	
3.4	Flare Emissions	
3.5	Fugitive Emissions	3-2
4.0	REGULATORY REVIEW4-1	
4.1	Permit By Rule 30 TAC §106.4	4-1
4.2	Permit By Rule 30 TAC §106.8	
4.3	Permit By Rule 30 TAC §106.352	
4.4	Permit By Rule 30 TAC §106.492	4-8
4.5	Permit By Rule 30 TAC §106.512	4-10
5.0	SCREEN3 ANALYSIS SUMMARY5-1	
	LIST OF TABLES	
TABL	E 3-1: EMISSION SUMMARY3-1	

LIST OF APPENDICES

APPENDIX A: TCEQ FORMS AND CHECKLISTS

Core Data Form

Form PI-7CERT

• 30 TAC §106.4 Checklist

• 30 TAC §106.352 Checklist

• 30 TAC §106.492 Checklist

30 TAC §106.512 Checklist

• Table 29 Reciprocating Engines

APPENDIX B: FIGURES

• Plot Plan

APPENDIX C: EMISSION CALCULATIONS

• Table 1 – Emission Summary

• Table 2 – Compressor Emission Calculations

• Table 3 – Flare Waste Combustion (F1MSS-VRU)

• Table 4 – Fugitive Emission Calculations

APPENDIX D: EMISSION CALCULATIONS (March 5, 2009)

APPENDIX E: ENGINE SPECIFICATIONS

APPENDIX F: SCREEN3 ANALYSIS

APPENDIX G: EPAY RECEIPT

TRC Companies, Inc.

APPENDIX A

TCEQ FORMS AND CHECKLISTS

- Core Data Form
- Form PI-7CERT
- 30 TAC §106.4 Checklist
- 30 TAC §106.352 Checklist
- 30 TAC §106.492 Checklist
- 30 TAC §106.512 Checklist
- Table 29 Reciprocating Engines

APIRTJAN 28 2010

TRC Companies, Inc.

January 2010

APPENDIX B

FIGURES

• Plot Plan

APPENDIX C

EMISSION CALCULATIONS

- Table 1 Emission Summary
- Table 2 Compressor Emission Calculations
- Table 3 Flare Waste Combustion (F1MSS-VRU)
- Table 4 Fugitive Emission Calculations

APIRT
JAN 28 2010

January 2010

TRC Companies, Inc.

Sugarkane Central Bettery 1 HYSYS Report for Condensate Tank Flashi Material Stream: HC Tank Vapors	ashing Louses Fluid Package: Basis-1	7	
SIACITICAL OF THE PROPERTY OF	Property Package: P.	Package: Peng-Robinson	
CONDITIONS	Overall Vs	Vapour Phase	Liquid Phase
Vapour / Phase Fraction Temperature: (5)	1 08 01	- 68	0 02
Pressure: (psia)	14.95	14.95	14.95
Molar Flow (MMSCFD)	9.385-03	9.395-03	00
Sid ideal Liq Vol Flow (barrel/day)	6.051	6.051	•
Molar Enthatpy (Btu/fbmole)	4.68E+04	4.58E+04	-1.08E+05
Molar Entropy (Blu/Ibmole-F) Heat Flow (Blu/Ir)	42.7 -4.82F+04	42.7	38.77
Liq Voi Flow @Sid Cond (barrel/day)	8.009	8.009	
	Overail	Vapour Phase	Uquid Phase
Act. Gas Flow (ACFM)	6.056	950.9	
Act. Volume Flow (barrel/day)	1553	1553	•
Avg. Liq. Density (femole/ft3)	0.7283	0.7283	0.3764
C - 1000	1.152	1,152	1.036
CP/Cv (Ent. Method) Cv (Fnt. Method) (Bluthmole-F)	13.81	1.154	
Cv (Semi-Ideal) (Btu/lbmoie-F)	13.94	13.94	54.57
Heat Capacity (Btu/Ibmole-F) Heat of Vac. (Btu/Ibmole)	15.93 1 17E+04	15.93	26.56
Kinomatic Viscosity (cSt)	4.457	4,457	1.285
Liq. Mass Density (Std. Cond.) (Ibrits) Liq. Vol. Flow (Std. Cond.) (barrel/day)	6009	6,009	45.23
Uq. Vol. Flow - Sum(Std. Cond) (barrel/day)	6.009	6.009	۰.
Lower Heating Vatue (Blu/bmole)	7.98E+05	7.98E+05	2.27E+06
Mass CV (Sturlb-F) Mass CV (Ent. Method) (Bturlb-F)	0.3394	0.3394	0.4597
Mass Cv (Semi-ideal) (Blu/lb-F)	0.3424	0.3424	0.4597
Mass Density (Ib/ft3) Mass Entheley (Blu/b)	1.18E-01	16E-01	45.82 -891.6
Mass Entropy (Btufb-F)	1.049	1.048	0.335
Mass Heat Capacity (DUMD-T) Mass Heat of Vap. (Blufb)	286	LASO	*0/*:0
Mass Lower Heating Value (Btufb) Moles Density (Impoleffs)	1.98E+04	1.96E+04	1.91E+04
Molar Volume (R3/lbmole)	352.4	352.4	2.591
Molecutar Weight Phase Fraction (Vol. Basis)	40.73	40.73	118.7
Phase Fraction (Mass Basis)	2,1228-314		•
Partial Pressure of CO2 (psia)	0.2658	15.02	3
Sid. Gas Flow (MMSCFD)	9.39E-03	9.39E-03	80
Std. Ideal Liq. Mass Density (Ib/ft3) 7 Earths	20.66	29.68	7 225.03
Watson K	15.32	15.32	12.57
User Property Phase Fraction [Moler Basis]	-	-	0
Surface Tension (dyna/cm)		L	21.41
I nermai Conductivity (Etunic-n-F) Viscosity (cP)	1.01E-02 8.25E-03	1.01E-02 8.25E-03	0.9434
Cv (Btu/fomoia-F) HC Daw Polaticael (F)	13.82	13.82	54.67
Higher Henting Valua(Gas) (MMBlu/bbl)	1.31E-02	1.31E-02	3.65E-02
Lower Heating Value(Gas) (MMBtu/bbl) Mass Deneth (Std. Cond)(Gas) (API)	1.20E-02 8.06E+04	1.20E-02 8.06E+04	3.39E-02 2.36E+04
Water Dew Point(Gas) (F) Wobbe Index(Gas) (MMBhubbi)	1.0E-02	-8.12 1.09F-02	1.685-02
Cost Based on Flow (Cost/s)		6	0
	, L	394	22.07
True VP at 37.8 C (pata)	Ā	643.4	31.24
	P		
4	1 2		
	R		
	T 201		
	n		

Content Parts	Material Stream: HC Tank Vapors Fluid Package: Basis-1	Fluid Package: Ba	nsis-1				Nomental		
Colored Colo	Overall Phase COMPONENTS	Vapour Fraction 1 MOLAR FLOW	FRACTION	MASS FLOW	MASS	VOC	VOC	LIQUID VOLUME	NOTON GINDE
Colored Colo	H2S	(Ipmole/In)	۰	(la/hr) o	-K -	FRAC.	FRAC.	FLOW (barrel/day)	NO D
CONTRACTOR	Nitrogen	•		0.0005	٥			0	-
0.000	Oxygen	0 0		0 0 0	0 0			0 0	0 0
0.1356 0.1315 0.27751 0.0518 0.4470 0.4777 1.15511 0.0518 0.4777 0.0518 0.1319 0.2774 0.0518	Argon			o o	0			0	•
Colored Colo	Methane	0.1356		2.1751	0.0518			0.4976	0.0822
0.0000	Ethane	0.3021	1	9.0849	0.2164	0.3440	0.4787	1.7489	0.289
Company Comp		0.0874		5.0778	0.1209	0.1209	0.1697	0.6187	0.1022
Control Cont	n-Butane	0.1024		5.963	0.1418	0.1416	0.1991	0.6989	0.1155
Colored Colo	22-Mpropane	0		٥	0	0	0	0	٥
No. 100 No.	Pontane	0.0283		2.0431	0.0487	0.0487	0.0684	0.2244	71000
0.0009	22-Moutane	900		900	0	0.056	30	20	0
100000 000000 000000 000000 000000 000000	Cyclopentane			. 0	٥	0	• •	•	0
100000 000000 000000 000000 000000 000000	23-Mbutane	0		0	٥	0	0	٥	0
100000 000000 000000 000000 000000 000000	2-Mpentane	•		0 (۰ ‹	۰ ۰	۰ ۵	۰ ۰	0 0
10000	o-mooness o-Hexana	0 0087		0.7469	0.0178	0.0178	0.0250	0.0772	0.0128
0.00006 0.00074 0.00075 0.0007	Mcyclopentan	0000		0.0665	0.0016	0,0016	0.0022	0.0081	0.001
0.0000 0.0000 0.0001 0.	Benzene	0.0005		0.0377	0.000	60000	0.0013	0.0029	0.0005
10000 00001	Cyclohexane	9000		0.0501	0.0012	0.0012	0.0017	0.004	0.0007
10000 00000 000000 000000 000000 000000 0000	2-Minaxaria 3-Mhaxaria	•		.			•		• •
00019 00004	224-Mpeniane	• •		. 0	• •	٥		• •	
10000 00000 000000 000000 000000 000000 0000	n-Heptan e	0.0019		0.1923	0.0046	0.0048	0.0065	0.0192	0.0032
0.0000 0.0001 0.0003 0.0001 0.	Mcyclonexane	0.000		0.0629	20013	0.0013	0.0021	0.0056	0.000
0.0001 0.0001	n-Octane	0.0005		0.0547	0.0013	0.0013	0.0018	0.0053	0.000
00001 00001	E-Benzene	0		0.0011	0	0	0	0.0001	0
1900 1 10000 1	m-Xylene	0.0001		0.0156	0.0004	0.0004	0.0006	0.0012	0.0002
00000 00000 00000 00000 00000 00000 0000	o-Xylene -Nonepe	0 0000		0.0021	0.0001	0.0001	0.0001	0.9002	0000
10000 00000 00000 00000 00000 00000 00000	Decane	0		0.0042	0.0001	0.0001	0.0001	0.000	0.0001
190000 - 72.70 - 700000 - 72.70 - 700000 - 72.70 - 700000 - 72.70 - 700000 - 72.70 - 7	1011	•		0.000	٥	٥	0	0,0001	0
10000 100000 10000	n-C12	0		0.0002	0	0	0	0	0
1000 0000 0000 0000 0000 0000 0000 000		0 6		0.000	o e	-	.		.
19000 - 21/2 - 20/2 - 2	101			• •	• •				
470 00000 00000 00000 00000 00000 00000 0000	n-c16	•			•	0	0	0	0
1000 00000 00000 00000 00000 00000 00000 0000	n-C17	0		0	0	φ:	0	0	0
110000 - 21/2 - 20/2 -	n-C18	0		0 (•	0 (0 0	0 (00
470 00000 00000 00000 00000 00000 00000 0000	1018				- c	o c		o c	0
470 00000 00000 00000 00000 00000 00000 0000	n-C21				0	. 0	. 0	. 0	. 0
1000 0000 00000 00000 00000 00000 00000 0000	h-C22	0 (0 (0	0 (0 (.	0 (
110000 - 121/2 - 120000 - 121/2 - 120000 - 121/2 - 120000 - 121/2 - 120000 - 121/2 - 120000 - 121/2 - 120000 - 121/2 -	n-C23	0 0		o	> C	0 0	0 0		- c
10000 00000 00000 00000 00000 00000 00000	P-C25			• •	•		0	. 0	. 0
470 00000 000000 ATL	n-C26	0		01		0	0 (01	01
420 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n-C2/	9 6			9 6	0 6	٥ د	o c	o c
0000 0000 0 0001 1000 0 0 0 0 0 0 0 0 0	n-C29	0 0		. 0		• •			
1030 0,000 0	P-C30	0		0	0	0	٥	0	0
AI	HZO	0.0008		0.0166	0.000	27.5	-	0.0011	0.0002
AI		2		Ì	-	1	-		-
AI		الفيه							
AT									
T	A								
	F N								

Coveral 1 Vapour Phase Liquid Phase Aquebus 5,106 5,10	FI CONDITIONS	Property Package: Peng-Robinson			
COVERTION STATES CONTRINED STATES STA	e contraction	-	Phase	2	queous Phase
Coverall (1973) 1973 647 647 647 647 647 647 647 647 647 647	Temperature: (F)	51.06	91.08	51.06	51.08
Coveral Content Cont	Pressure: (psta) Molar Flow (MMSCFD)	1.573	1.573	Š	Š
Augential Series - 1,000 - 1,246	Mass Flow (Ib/day)	1.14E+05	1.14E+05	0	•
COVERTIES TO SECTION 1999 COVERTIES TO SECTION	Std Ideal Liq Vol Flow (barel/day) Molar Enthalov (Btu/brole)	821.8 -4.09E+04	821.8 4.09E+04	-1.00E+05	2
Coverill Vipour Phase Uquid Phase Aqueous 236 6.05E-04 6.	Molar Entropy (Btu/lbmole-F)	42.05	42.05	38.9	-
Covers 28 Covers 29 Covers 29 Covers 29 Covers 20 Cov	Heat Flow (Btufhr) Lig Vol Flow @Std Cond (barrel/day)	-7.06E+06	-7.06E+06	00	••
236 236 236 236 236 236 236 236 236 236					squeous Phas
1.05E-04 1.05E-		236	238		
1.229 1.229 1.239 1.039 1.229	Act. Liq. Flow (UsurM) Act. Volume Flow (barrel/day)	6.05E+04	6.05E+D4	0	
1,229 1,188 1,198 1,198 1,198 1,198 1,128	Avg. Liq. Density (ibmote/fi3)	0.8963	0.8983	0.3946	3.457
1.564 8.489 8.489 8.489 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.501 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.502 1.503 1.	Cp/(Cp - R)	1.198	1.198	1.038	1.127
10.48 10.48	Cp/Cv (Ent. Method)	1.264			
1.671 1871 1985 1988 1988 1989 1989 1989 1989 198	Cv (Ent. Method) (Btu/lbmole-F)	8.489	9.499	600	18.59
1818 1818 1818 1818 1819 1819 1819 1819	CV (Settinglish (Stuffbringle-F)	12.01	12.01	12	18.58
2.122e-314 3.132e-32 3.132e	Heat of Vap. (Btu/Ibmole)	8186		400	
2.122-314 3.337-6.2 3.366-6.2	Kinematic Viscosity (Col) Lio. Mass Density (Sid. Cond) (Ib/fi3)	1.0/1	1.87	44.74	63.33
2.1726-316 2.1726	Llq. Vol. Flow (Std. Cond) (barrel/day)		,	0	0
2.1226-314 2.1226-34	Liq. Vol. Flow • Sum(Std. Cond) (barrel/day) Finuld Fraction		90	۰-	
0.355 0.355 0.4659 0.355 0.4659 0.355 0.35	Lower Heating Value (Blu/Ibmole)	6.39E+05	5.39E+05	2.13E+06	3.82E-03
2.1226-04 1.385-0 0.3853 0.4888 0.0488 0.4878 0.4888 0.488	Mass CV (Btufb-F)	0.356	0.356	0.4689	0.9069
2.1/226-314 2.1/226-314 2.1/226-314 1.386-604 1.386	Mass CV (Em. Memos) (Blufb-F) Mass CV (Sami-ideal) (Blufb-F)	0.3653	0.3653	0.4889	0.9208
1,522 1,532 1,532 1,532 2,633 1,536 1,	Mass Density (API)	2.62E+04	2.82E+04	64.38	33.26
28137 0.4377 0.4868 2814 1.896-04 1.896-04 1.896-04 1.896-04 1.189	Mass Entrally (Blu/lb) Mass Entroy (Blu/lb-F)	1,532	1.532	0.3585	0.661
1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-04 1.00E-05 1.0	Mass Heat Capacity (Btu/lb-F)	0.4377	0.4377	0.4868	1.031
1.22E.02 1.22E.02 0.4044 1.13E.02 1.22E.02 0.4044 1.13E.03 1.13E	Mass Heat of Vap. (Blu/b) Mass I ower Heating Value (Blu/b)	298.3 1 96E+04	1.98E+04	191E+04	2.12E-04
2.1226-314 2.1226-314 1.306-02 1.	Moiar Density (Ibmole/ft3)	1.22E-02	1.22E-02	0.4044	2.969
(12) 1.120-314 (13) 1.150 (14) 1.150 (15) 1.	Moiar Volume (ft3/lbmole) Moiar dar Weight	91.98	81.98	2.473	18 02
1201 1201 1201 1201 1201 1201 1201 1201	Morecular weign Phase Fraction [Vol. Basis]	*****	1	9	70.01
1201 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1573 1574		•	-	0	0
1573 1573 1573 1573 1573 1573 1573 1573	Partial Pressure of CO2 (psls) Coacific Heat (Brushmole, F)	1.664	12 01	54.18	18.58
1.38E-02	Std. Gas Flow (MMSCFD)	1.573	1.573	90	0
1 1 1 1 1 1 1 1 1 1	Std. Ideal Liq. Mass Denetty (Ib/ft3)	24.65	24.65	43.92	52.3
138E-02 138E-03 138E	Z Factor Wetson K	16.84	16.64	12.64	8.524
138E-02 138E-02 138E-02 19.46	User Property	•	•	•	•
1.38E-02 1.38E-02 1.38E-02 1.38E-02 1.00E-02	Phase Fraction [Molar Basis] Surface Tension (Ame/cm)	-	-	19.46	74.57
100E-02 100E	Thermal Conductivity (Btwhr-n-F)	1.39E-02	1.39E-02	6.88E-02	0.3397
Sold Sold Sold Sold Sold Sold Sold Sold	Viscosity (cP) Cv (Btu/bmole-E)	1.00E-02 9.769	1.00E-02 9.789	0.7875	16.34
Milleruph) 8 48 18-03 8 13 18-03	HC Dew Point[Gas] (F)	50.43	50.43		L
1.11-00 2.08-04 1.72 1.12-00 80-44 1.72 1.12-00 80-44 1.72 1.12-00 80-42 1.82 1.12	Higher Heating Value[Gas] (MMBt⊾/bbi) Lower Heating Value[Gas] (MMBtu/bbi)	8.04E-03	8.81E-03	3.37E-02 3.13E-02	5.99E-11
APIRT AN 28 2010	Mass Density (Sid. Cond)[Gast (APD	.21E+06	1.21E+05	2.58E+04	1.75E+05
APIRT JAN 28 2010	Wobbe Index(Gas) (MMBtured)	0.02E-03	9.02E-03	1.60E-02	3.70E-04
\$ APIRT IAN 28 2010	Cost Based on Flow (Cost/a	00	0	0	0
PIRT N 28 2010			4000	42.27	25.00
28 2010			200	2	1
		P]			
	8	ĪF			
	20	27			
	10	7			
		(1 .74			

HYSYS Report for Low Pressure Separator Gas Material Stream: LP Gas - a Fluid	rator Gas Fluid Package: Basis-1	sis-1						
Overall Phase	Vapour Fraction 1.	0000				Nomalized VOC		
COMPONENTS	MOLAR FLOW	MOLAR FLOW MOLE FRACTION MASS FLOW (Bridgelin)	MASS FLOW	MASS	MASS	MASS	LIQUID VOLUME LIQUID VOLUME FLOW (barrel/day) FRACTION	LIQUIO VOLUME FRACTION
H2S		0		•			0	•
Nitrogen	0.0403	0.0002	1.127	0.0002			0.0958	0.0001
Oxygen		0 1	0 007	0 57.0			0 57.00	0 2010
CU2 Amon	6.44.4	0.025	0.00	5 0				0
Methane	89.7285	0.5196	1439,504	0.3038			329.2216	
Ethane	42.6268	0	`	0.2705			246.7571	0.3003
Propane	22.3217			0.2077	0.2077	0.5420		
-Butane	4.7855	0.0277	278.1531	0.0587	0.0587	0.1532	33,8916	0.0412
n-Butane 22 Manager	5.4114 6			0.0004	400.0	55.1.0		200
- Peolane	14533	1800	104 8569	0.0221	0.0221	0.0577	11.5165	410.0
n-Pentane	0.8638			0.0132	0.0132	0.0344	6.7765	0.0082
22-Mbutane	•			•	•	0	0	•
Cyclopentane	•	0			0	0		φ.
23-Mbutane	0 6	0 (۰ ۵	•	0 9	0	96	-
2-Mpsmane	5 6			o c			•	
o Hexane	0.4685		40.374	0.0085	0.0085	0.8222	4,1719	0.0051
Mcyclopentan	0.0421	0.0002		0.0007	0.0007	0.0018		0.0004
Benzene	0.0256			0.0004	0.0004	0.0010		
Cyclohexane	0.0319		2.6873	0.0006	0.0006	0.0018	0.2354	0.0003
2-Whexane		•	•	0	-	9 6	9 6	-
274-Moentana					• •			
n-Heptane	0.1105		-	0.0023	0.0023	0.0060		
Mcyclohexane	0.0358			0.0007	0.0007	0.0018	0.3115	0.0004
Toluene	0.037		3.4136	0.0007	0.0007	0.0018		
n-Octane T Possess	0.0296	0.0002		0.0007	0.0007	0.0018	0.3277	0.0004
	90000	0.00		0.0002	0.0002	0.0005		0.000
o-Xyene	0.0012		0.1285	0	0	-		
n-Nonane	0.0064			0.0002	0.0002	0.0005		0.0001
n-Decane	0.0021			0.0001	0.0001	0.0003		0 (
FC11	0.0004	0 6	0.0675	0 9	0 0	•	0.0062	5
5012	0000			9 0	9 6	- 6		90
901				•		• •	0.0001	•
n-C15	•		Ü	0	٥	•		
n-C16	•			٥	٥	•	0	0
n-C17	•		0 (٥	۰ ۰	0 (0 (0
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 e	-	- C	- c	9		•
n-C20				0	0		. •	. 0
P.C21	•			•	٥	٥	0	0
n-C22	•			0	0	•	•	0
n-C23	•	0		•	0	•		
n-C24	•			0 6	0 6	0 6	-	9 6
FC26				•	• •			
n-C27	•		-	0	•	٥		
n-C28	•		•	•	0	•		
n-C29	0			0	0 (•	•	0 1
n-c30	0 000			0	0 0	- 6		
Total	172.6927	1.00	4738,3548	1.00	0.3632	.8.	821.7974	1.00
- sp.tř								

	Sugarkane Central Battery 1 HYSYS Report for Slop Tank Emissiens Material Stream: to Slop Tank	Fluid Pa	Fluid Package: Basis-1	ī			
		Property	Package: P	Property Package: Peng-Robinson			
	CONDITIONS	Overall		Vapour Phase	Liquid Phase	Aqueou	
	Vapour / Phase Fraction		0.5368	0.5368	0.4618		
	Lemperature: (F) Pressure: (nels)		28.33	28.33	28.33	28.33	
	Molar Flow (MMSCFD)		2.24E-02	1.20E-02	1.03E-02	3.15	
	Mass Flow (lb/day)		2710	1038	1671		
	Std ideal Liq Vel Flow (barrel/day)		15.09	8.872	8.112	4.28E-03	
	Motar Entratoy (Bru/tamole-F)	•	28.96	41.06	-6.56E+04	•	
	Heat Flow (Bluft)	•	-1.32E+05	-5.71E+04	-7.47E+04	•	
	Liq Vel Flow @Std Cond (barreVday)		14.87	8.109	7.92	4.216-03	
		Overall	,	Vapour Phase	Liquid Phase	Aqueous Phase	
	Act. Gas Flow (ACFM)			1.685			
	Act. Liq. Flow (USGPM)		0.2236		0.2237	1.216-04	
	Ava Lia, Density (bmole/fi3)		0.8965	0.809	0.5983		
	Cp/(Cp - R)		Ξ	1.173	1.067		
	Cp/Cv		 1.064	1.217	1.067	1.126	
	Cp/CV (Ent. Method) Cv (Ent. Method) (Btufbmole-F)			70.1			
	Cv (Semi-Ideal) (Btu/lbmole-F)		19.79	11.48	28.46		
	Heat Capacity (Btu/Ibmole-F)		21.79	13.47	31.45	18.62	
	Heat of Vsp. (Btufbmole)		1.43E+04	,			
	Notematic Viscoury (CO)		32.46	1.00c.	37.57	63.33	
	Lig. Vol. Flow (Std. Cond) (barrel/day)		14.87	8.109	7.92	4.2	
	Liq. Vel. Flow - Sum(Std. Cond) (barrel/day)		16.03	5.109	7.82	4.215-03	
	Liquid Fraction		U.4632	901007	- 50 HOC +	70 300	
	Mass Cv (Btuth-F)		0.4457	Ţ	0.4805	•	
	Mass Cv (Ent. Method) (Btu/lb-F)			0.3377			
	Mass Cv (Semi-Ideal) (Btu/Ib-F) Mass Density (API)		7902	0.3504	95.72	6.933	
	Mass Enthalpy (Btu/lb)		-1171	-1320	.1073		
	Mass Entropy (Blu/lb-F)		0.6523	1.253	0.2793		
	Mass Heat Capacity (Btu/Ib-F) Mass Heat of Van (Btu/Ib)		311	0.411	0.5128	1.033	
	Mass Lower Heating Value (Bitulb)		1.96E+04	1.96E+04	1.95E+04	2.24E-05	
	Molar Density (Ibmele/ft3)		2.30E-02	1.31E-02	õ		
	Molar Volume (#3/lbmole)		41.96	76.62		0	
	Morecular vyagon Phase Fraction (Vel Resis)		0.4621	32.17	0.5376	7 84E-04	
	Phase Fraction [Mass Basis]		0.383	0.383			
	Partial Pressure of CO2 (pala)		1484				
	Specific Heat (Btu/Ibmole-F)		21.78	13.47	31.45	18.62	
			31.99	26.51	36.68		
	Z Factor			0.9486	1.9	3.4	
	Watson K		1,5	16.34	13.48	8.524	
	User Property Phase Fraction (Molar Basis)		0.5368	0.5368	0.4818	0.0014	
	Surface Tension (dyne/cm)						
	Thermal Conductivity (Blufn-fi-F)			1.15E-02	6.22E-02	0.3282	
	Viscosity (cP)		20.47	8.9/15-03	11.42.0		
	CV (Brundmole-F) HC Dew Point[Gas] (F)		175.9	28.32		297.6	
	Higher Heating Value(Gas) (MMBtu/bbl)		1.48E-02	1.05E-02	5.0	3.0	
_	Lower Heating Value[Gas] (MMBturbbl)		1.36E-02	9.83E-03	1.85E-02	8.32E-12	
_	Water Dew Point(Gas) (F)		52.96	28.31			
_	Webbe index[Gas] (MMBtu/bbl)		1.18E-02	9.84E-03	1.3	3.7	
-	Cost Based on Flow (Cost's) Partial Pressure of H28 (oxia)		00	•	-	-	
_	Reid VP at 37.8 C (pale)		346.9		98.83		
=	True VP et 37.8 C (pals)		496.4	1072		7.101	
-	COMPOSITION						

APIRT

JAN 28 2010

Sugarkane Central Battery i HYSYS Report for Slop Tank Emissions Material Stream: to 6lop Tank	Fiuld Package; Basis-1	7				Memory		
Overall Phase COMPONENTS	Vepour Fraction 0.5368 MOLAR FLOW MOLE FRACTION MASS FLOW (IbmicRh) (IbmicRh)	JES AOLE FRACTION	MASS FLOW	MASS	VOC MASS FRAC	VOC MASS FRAC	LIQUID VOLUME LIQUID VOLUME FLOW (barral/day) FRACTION	LIQUID VOLUME FRACTION
H2S Nitrogen	0.0001	• •	0.0025	00			0.0002	• •
Oxygen	0	0 5	0 4136	0.0125			0 1173	0 00
Argon	0	9						
Methane	0.4049	0.1647	6.4959	0.1398				
Propane	0.574	0.2335	25.3109	0.2241	0.2241	0.2839	3,4205	0.2267
i-Eutane n-Butane	0.2081	0.1166	12.0946	0.1073	0.1476	0.1357		
22-Mpropane	0	0	0 0	0 200	00 70	0 50		
Periane	0.089	0.0362	6.4248	0.0569	0.0569	0.0721		0.0463
22-Mbutene	0	01	0	0	0	0 (
Cycloperitine 23-Mintane	00		9 6		9 0	9 9	9 0	
2-Mpentane	. 0	0	0		0		. •	
3-Mpentano	0 000	0 0 0 0		0 9890	0.088	0 0369		
Mcyclopentan	0.0084	0.0034		0.0063	0.0063	0.0080		
Benzene	0.005	0.002	0.3927	0.0035	0.0035	0.0044	0.0306	0.002
2-Mhexane	0	a		0	0	0		
3-Mhexane 224-Meniane	o c	0 0	0 6	o c	0 6	00		
n-Heptane	0.0373	0.0152		0.8331	0.0331	0.8419		
Mcyclohexane	7110	0.0047		0.0101	0.0101	0.0128		
Totolio P-Octaba	0.0167	0.0068		0.0169	0.0169	0.0214		
E-Benzene	0.0004	0.0002		0.8004	0.0004	0.0005		
m-Xylene	0.0056	0.0023		0.0053	0.0053	0.0867		
	0,0055	0.0022		0.0063	0.0063	0.00		
n-Decane	8.0024	0.001		0.0031	0.0031	0.0038		
n-011	0,0007	0.0003	0.1017	60000	0.000	0.001	0,0094	0.0008
101	8.0001	0		0.0001	0.0081	0.0001		
n-C14	0	01	0.0026	0 (0 (0		
n-C15 n-C16	• •	0 0	0.0012		00	00		
n-C17	•		0.0002	•	0	0		
n-C16	•	Q C	0.0001		• •	00		
n-020	9 69		• •		. 0			
n-C21	00	9	0 0	0 0	0 0	00		
H-C23		. 0			• •			
n-024 n 036	00	0 6	00	0 6	0 0	9 6		
n-C26					1 00 (
n-c2/ n-C28	9 6	9 9			9 0	0		
n-C29	• •	00	00		00	• •		
H20	0.0051	0.0021	0.0922	0.0008	0.7893		0.0063	0.0004
_	7.4363	-	112.9263	-	6.7035	-		-
A An								
Control of the Contro								

HYSYS Repert for Slop Tank Emissions Material Stream; to Slop Tank	Fluid Package: Basis-1	<u>:</u>			-	, acilemen		
Vapour Phase	Phase Fraction 0.8	Phase Fraction 0.5368				X V V		
COMPONENTS	MOLAR FLOW	MOLE FRACTION	MASS FLOW	MASS FRAC	MASS	MASS	LIQUID VOLUME LIQUID VOLUME FLOW (barrel/day) FRACTION	FRACTION
H2S			•	٥				0
Nitrogen	0.0001	0.0001	0.0025	0.0001			0.0002	0
Dxygen	0		0 ;	0				3
Amon	620.0	6770.0	41.6	4050.0			5	90.00
Methane	0.3943	0.298	6.3256	0.1463			1.4467	
Ethane	0.4393			0.3054			2.5428	0.3647
Propana	0.3116	0.2361		0.3177	0.3177	0.6143	1.857	
Heutane	0.061		3.548	0.082	0.082	0.1585	0.4323	
n-Butane	0.0622			0.0836	0.0836	0.1616	0.4246	0000
22-Mpropane	91,00	88000	0 848.0	0 0400	0 20	2,500	71900	00130
T-Partane	0.0058			0.0097	0.0097	0.0188	0.0458	
22-Mbutane	•		0	•	0	0	•	
Cyclopeniane	٥		0	0	a	0	0	0
23-Mbutane	0	0	۰ ۰	0	0	0 (0 (•
2-Mpentane	-			9 6	9 6	9 0	-	-
C-Marana C-Marana	9100.0			2000	0000	0.004	7410	
Mevelobertan	0.0002			0.0003	0.0003	90000	0.0012	
Benzene	0.0001	0.0001	0.0073	0.0002	0,0002	0.0004	0.000	10000
Cyclohexane	0.0001			0.0002	0.0002	0.000	0.0008	
2-Whexane	•	0	0	0	0	0		0 (
3-Mnexane	06	•		0 0		9 6		-
Assessed to the second of the			90400	9000	9	5	9500	
Movelonexane	0.000	0000	0.0072	0.000	0.000	4000	9000	
Toluene	0.0001		0.0058	0000	0.000	0.000	0.0005	0.0001
n-Octane	0		0.0028	0.0001	0.000	0.0002	0.0003	
E-Benzene	•	0	0.000	•	•	•	0	
m-Xylene	•	0	0.0007	0	0	0 (0.0001	
0-Xylene	•	•	0.0001	00	- (9 6	•	- (
	96	•	9000	9 6		> 0	96	
±0-		•		0	• •			
n-C12	•	٥	0		0	٥	6	
n-C13	•	0	0		0	•	•	
P-C14	0	•	0		0	0	0	
PC15		•	0 (0 0	0 0	•	
5017					9 0			
		•			0	0		
n-C19		٥	0		0	٥	•	
n-C20	•	•	0		0	0	•	
n-C21	•	•	0 (0 0	0	۰.	
n-C23			00			o c	9 6	
1023 1024	•				9 0	•		
n-C25	• •		0		. 0	. 0		
n-C26	•	٥	0		•	0	•	
n-C27	0	0 (0		0 0	0 0	•	0 0
1-028	0 6		5 C		0 0	9 6	•	
n-C30	90				•	• 0		
¥30	0.0015	0.0012		0.0006			0.0019	0,0003
Total	1.3197				0.5172	-	6.9726	

HYSYS Report for Stop Tank Emissions	i							
Material Stream: to Stop Tank Liquid Phase	Fluid Package: Basis-1 Phase Fraction 0 4518	48-1 518			S C	ON.		
COMPONENTS	MOLAR FLOW	MOLAR FLOW MOLE FRACTION MASS FLOW	MASS FLOW	MASS	MASS	MASS	LIQUID VOLUME LIQUID VOLUME	LIQUID VOLUME
	(Ibmole/hr)	•	(b/h)		FRAC.	FRAC.	FLOW (barrel/day)	FRACTION
27E		0 (0 1			5 (
Control	-	9 6	5	5 6				-
CO2	0.0023	000	96600	41000			0.0083	, 5
Argon	•	٥	0	٥			•	٥
Methane	0.0106		0.1703	0.0024			0.0389	0.0048
Ethane	0.0859		2.5821	0.0371			0.4971	0.0613
Propane	0.2624	0.2311	11.5699	0.1662	0.1662	0.1733	1.5636	0.1927
- Purano	0.147	0.1285	8.5486	0.1228	0.1228	0.1281	1.0414	0.1284
n-buane 22-Mannane	0.2248	0.19/8	13.0521	6/8/5	8.18/5	0.1855	1.5324	0.1889
Paritina	0 1180	5.0	8 4344	0 1213	5 5 5 5	0 1284	7868.0	0 4140
n-Pentane	0.0832	0.0733	6.0039	0.0862	0.0882	0.0899	0.8528	0.0805
22-Mbutane		0	0	0	0	٥	0	o
Cyclopentane	•	0	0	6	•	•		0
23-Mbutane	0 1	0	0	0	0	٥.	0	0
2-Mpentane	•	•	0 (0 (0	0 (۰,	0 (
J-Mportane J-Moverne			7 800 0	9	9	9 6	2785.0	
Movelopmentan	0.0662		7908.0	2601.0	201.0	0.0	2000	
Benzene	0,0049	0.0043	0.3855	0.0055	0.0055	0.0057	0.0299	0.0037
Cyclohexane	0,0069		0.5802	0.0083	0.0083	0.0087	0.0508	
2-Mhexane	•		0	0	٥	0	•	
3-Mhexane	•	0	0	0	0	٥	0	0
224-Mpentane	•	•	0	•	•	•		
n-Heptane	0.0371		3.7202	0.0534	0.0534	0.0557	0.3708	
Moycionexane	0.0118		1.1385	0.0164	0.0164	0.0171	0.1009	
Ottoba	50.0		1.202.1	0.01/3	5,100	0.0190		
F-Benzens	9000	0.000	90200	0.0274	0.000	9000	0.000	
m-Xylene	0.0056		0.5847	0.0085	0.0085	0.0089		0.0058
o-Xytene	0.0008			0.0012	0.0012	0.0013		
n-Nonane	0.0055			0.0102	0.0102	0.0106		
n-Decane	0.0024	0.0022	0.3478	0.005	0.005	0.0052	0.0325	
101	0.0007			0.0015	0.0015	0.0016	•	
FC12	0.002	0.002	0.0331	0.000	0000	0.000	9000	0.000
10-0			0 0009	0		3	0.0002	
101s	•		0.0012	•	0	0	0,000	
n-C16	•	0	0.0004	0	0	0		0
1017	•	0	0.0002	0	0	0	0	0
	0 (0 0	0.0001	0 0	0 0	0 0	0	0
1-C38	•	> 6	> c	•	> <	> C		> C
n-c21	. 0	•	. 0			•	. •	
n-C22	0	•	0	0	0	0	•	0
n-C23	0	•	0	•	0	٥	0	0
P-C24	۰.	0 (6	0	0 (•	•
5-02-6		0 0	00		0 0	0 0	0 6	0 6
0-C27		0	9 6		•	۰ د	•	•
n-C28	•	•		. 0	•	0		•
r-C29	0	0	0	0	0	0	•	0
n-C30	0		0	0	0	0	0	
HZ0	0.0001	0.0001	0.0023	۰.	9	•	0.0002	.
	-	-	93.010	-	20.5	-	0.11.0	-

	Sugarkane Central Battery 1 HYSYS Report for Loading Operations Naterial Stream: Liquids to Trucking	Fluid Package: Basis-1	asis-1		
	CANDITIONS	Property Packag	Property Package: Peng-Robinson		
		Overali	Vapour Phase	Uquid Phase	
	Vapour / Phase Fraction	0 5	0		
	Preserve: (Date)	14.85	39,62		
	Molar Flow (MMSCFD)	8.92E-02	•	8.92E-02	
	Mass Flow (tb/day)	2.79E+04	۰	2.7	
	Std Ideal Lig Vol Flow (barre/day)	111.3	•		
	Moiar Enthelpy (Blufbmole)	-1.06E+05	4.68E+04	-1.06E+05	
	Heat Flow (Bluffs)	38.77	٠	2	
	Liq Vol Figure @Std Cend (barret/day)	109.8	•	ī	
	ROPERIES	Overal	Vapour Phase	Liquid Phase	
	Act. Liq. Flow (USGPM) Act Volume Flow (Nemal/Sec)	3.185	•	3.185	
	Avg. Liq. Density (lbmole/fi3)	0.3784	0.7283	٥	
	Cp/(Cp - R)	1.036	1.142		
	Cp/Cv	1.036	1,152		
	Cycy (Ent. method) (Btu/bmole-F)	56.07	13.81		
	Cv (Semi-Ideel) (Btu/Ibmole-F)	54,57	13.94		
	Heat Capacity (Btufbmole-F)	56.56	15.93	56.56	
	Ribert of Vep. (Blufamore) Kinematic Viscosity (CD)	5,125,104	1377	300. 1	
	Liq. Mass Density (Std. Cend) (Ib/R3)	46.23	29.87		
	Liq. Vol. Flow (Std. Cond) (barrel/day)	109.9	0	109.9	
	Liq. Vol. Flow - Sum(Std. Cond) (barrel/day)	6.801	0 6	109.9	
	Lower Heating Value (Btu/bmole)	2.27E+08	7.98E+05	2.27E+08	
	Mass Cv (Btuffb-F)	0.4667	0.3394		
	Mass CV (Erg. Method) (Blufb-F)	0.4722	0.339		
	Mass Deneity (API)	60.68	7.62E+04	60.88	
	Mass Enthalpy (Btu/lb)	-891.5	-1148	•	
	Mass Entropy (Stullo-F) Mass Heat Capacity (Bhulb-F)	0.335	1.049	0.335	
	Mass Heat of Vap. (Btu/lb)	431.1			
	Mass Lower Heating Value (Btu/tb)	1,915+04	1.98E+04	1,91E+04	
	Moter Density (Exmote/T.3) Moter Volume (ff3/fbmote)	0.386	2.84E-03	0.386	
	Molecular Weight	118.7	40.73	118.7	
	Phase Fraction (Vol. Basis)	, , , ,	٠		
	Partial Pressure of CO2 (osla)	2.1228-314	•	-	
	Specific Heat (Btu/Ibmole-F)	56.56	15.93		
	Sid. Gae Flow (MMSCFD)	8.92E-02	0 8	8.9	
	Z Factor	80.4 80.4	0.9829	7.235-03	
	Watson K	12.57	15.32	12.57	
	User Property Dhace Frantism Maler Desial	<	•	•	
	Surface Tension (dyne/cm)	7	•	- 17	
	Thermal Conductivity (Btu/hr.fl-F)	7.186-02	1.01E-02	7.1	
•	Viscosity (cP)	0.9434	8.26E-03	•	
_	Cv (Stu/jomole-F) HC Dew Peint(Gas) (F)	54.57 574.8	13.82	54.57	
	Higher Heating Value (Gas) (MMBtu/bbi)	3.65E-02	1.315-02		
	Lower Heating Value[Gas] (MMBtu/bb))	3.395-02	1.20E-02		
A	Mass Density (Std. Cond)[Gas] (API)	2.38E+04	8.08E+04	2.38E+04	
1	Wobbe index(Gas) (MMBtu/bbl)	1.86E-02	1.09E-02	1.86E-02	
P	Cost Based on Flow (Cost/s)	0 0	0	0	
I	Reid VP at 37.8 C (pais)	22.07	394	22.07	
R	True VP at 37.8 C (pala)	31.24	4.5.4	31.24	
	COMPOSITION				

HYSYS Report for Leading Operations Material Stream: Liquids to Trucking	Fluid Package: Basis-1	nsis-1						
Overall Phase						Nomelized VOC		
COMPONENTS	MOLAR FLOW	MOLAR FLOW MOLE FRACTION MASS FLOW (Bondent)	MASS FLOW	MASS	MASS	MASS	LIQUID VOLUME LIQUID VOLUME FI OW (harnel/day) FRACTION	LIQUID VOLUME
H2S		0	ò	•			0	0
Nitrogen	0	0	0	•			•	•
Oxygen	0	0	0 25	0			9	0
Argen	9000	9.0	000	0000			200	0.00
Methane	0.0079	0.0009	0.1272	0.0001			0.0291	0.0003
Ethane	0.1202	0.0123	3.6152	0.0031			0.696	0.0063
Propere	0.5477	0.0559	24.1526	0.0208	0.0208	0.0209	3.264	0.0293
D.Bitane	0.4332	0.0444	797767	0.021	0.0217	0.0216		0.027
22-Moropane	201	0.0162	45.4.13.	2 50	5.00.0	0.03	O.O.O.O.O.	900
I-Pentane	0.5961	0.0608	43.0078	0.037	0.037	0.0371	4.7235	0.0425
n-Pentane	0.4916	0.0502	35.4704	0.0305	0.0306	0.0306	3.8568	0.0347
22-Mbutane	•	•	0	•	0	•	•	0
Cyclopentane	•	91		0 (٥.	01		0
25-Moutane 2-Montane	0 6	9 6	9 6		0 6	56		0 0
2-Moentane	• •	9 6		9 6	9 6	9 6	•	· c
-Texane	0.9873	0.1008	85.0793	16790	0.0731	0.0734	8.7912	0.078
Mcyclopentan	0.0868	0.0089	7.3023	0.0063	0.0063	0.0063	0.6649	900'0
Benzena	0.0507	0.0052	3.8591	0.0034	0.0034	8.0034		0.0028
Cyclohexane	0.0808	0.0082	6.0029	0.0058	0.0068	0.0058		0.0054
2-Miexano		> C	.	9 6		3 6		-
224-Mpentane	•	•	• •			•		•
n-Heptane	0.8127	0.0829	81.4317	0.0	0.07	0.0702		0.073
Mcyclohexane	0.2138	0.0218	20.9932	0.018	0.018	0.0181		0.0187
Toluene	0.2774	0.0283	25.555	0.022	0.022	0.0221		0.0181
n-Octane	0.7538	0.0769	86.0893	0.074	0.074	0.0743		0.0751
	0.0758	0.0016	1.6701	0.0014	0.0014	0,0074		0.0012
o-Xylene	0.0394	000	4.1853	0.0036	0.0038	0.0036		0.0029
n-Nonane	0.5367	0.055	69.0875	0.0594	0.0594	0.0596		0.059
n-Decane	0.5585	0.0568	79.182	0.0661	0.0681	0.0683		0.0665
FC11	0.3902	0.0398	60.9891	0.0524	0.0524	0.0528		0.0505
rc12	0.256	0.0263	47.8007	0.0408	0.0400	9000		0.0389
n-C14	0.1983	0.0203	39,5331	0.034	0.034	0.0341		0.0319
n-C15	0.1754	0.0178	37.2508	0.032	0.032	0.0321		0.0298
P.C18	0.135	0.0138	30.6853	0.0264	0.0264	0.0285		0.0244
200	0.0116	0.0114	26.830	0.0231	0.0231	0.0232	2,3552	0.0212
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0877	0.0089	23,5455	0.0202	0.0202	0.0203		48100
n-C20	0.0638	0.0085	18.0188	0.0155	0.0155	0.0158		410.0
n.C21	0.0558	0.0057	16.5501	0.0142	0.0142	0.0142		0.0128
n-C22	0.0478	0.0049	14.8557	0.0128	0.0128	0.0128	12787	0.0115
n-C24	0.0399	0.0041	12.9386	0.0111	0.0111	0.0000		0.0083
P-C25	0.0239	0.0024	8.4343	0.0073	0.0073	0.0073		0.0065
n-C26	0.0238	0.0024	8.7696	0,0075	0.0075	0.0075	0.7456	0.0067
n-C27	0.0159	0.0016	8.0701	0.0052	0.0052	0.0052		0.0046
P-C28	0.0159	0.0018	8.2836	0.0054	0.0054	0.0054		0.0048
1000 1000 1000	60039	0.0016	6.5173	0.0056	95000	0.0056	0.5507	0.0049
000	0.095/	Beou.u	40.4457	2000	0.0348	0.0348		0.00.0
Total	9.7942	. –	1163,2589	•	0.9865	1.8	111.2647	· –

APIRT

JAN 28 2010

EMISSION CALCULATIONS BACKUP – HYSYS REPORTS

APIRT

JAN 28 2010

Liaise